| 研究生: |
李冠緯 Li, Kuan-Wei |
|---|---|
| 論文名稱: |
運用廢棄物產出投入分析工業區產業共生現況及與其他區域資源整合機會 Analysis of waste inputs and outputs for by-product synergies in an industrial park and the potential to improve industrial symbiosis by regional resources integration |
| 指導教授: |
陳必晟
Chen, Pi-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 129 |
| 中文關鍵詞: | 產業共生 、循環經濟 、媒合平台 、資訊系統 、再利用 、視覺化 、網頁程式 |
| 外文關鍵詞: | Industrial symbiosis, By-product synergy, Information system, Interactive visualization, Web applications |
| 相關次數: | 點閱:101 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
產業共生(IS)是類生態系統的一種工業合作模式,一間企業所生產的廢棄物可以作為另一產業之材料投入使用,廢棄物交換過程中可以節省原生材料的使用並減少廢棄物的產出。在許多國家的區域地方產業或工業園區都帶來了可觀的環境和經濟效益。
發展產業共生(IS)的需要透過機會識別的方式才得以發展,這仰賴業者間能獲取足夠的資訊,才能匹配到適合的廢棄物供需對象。然而業者之間資訊的缺乏限制了業者對共生機會的識別,即便存在廢棄物的供需雙方,卻無法得知彼此的存在。為了解決資訊缺乏的產業共生障礙和促進產業共生發展,許多研究發現資訊系統和工具在解決資訊壁壘和促進產業共生有極大的應用潛力,可以幫助發現更多產業共生的機會。研究現有產業共生資訊工具發現許多資訊系統缺乏足夠的廢棄物和再利用資料支撐媒合進行、查詢方式單一缺乏靈活度、不便的使用者體驗導致乏人問津、甚至無法公開使用或正常運行。
本研究基於台灣的廢棄物投入與產出資料庫,開發了一個完整的IS資訊系統,其中包含五個針對不同查詢需求設計的應用功能,包括媒合產業推薦功能,根據廢棄物類別媒合功能,根據行業別媒合功能,根據區域媒合功能及依使用者身分客製化媒合功能。讓使用者可以靈活地從不同角度切入找到適合的媒合對象,並採用了互動式網路地圖、數據可視化技術及各式圖表,讓使用者容易判讀媒合成果,找到適合的媒合夥伴。
為了驗證本研究所設計的工具可以有效的開發IS潛力,選擇台南市官田區及官田工業區作為地區案例研究的對象,使用工具中區域媒合功能查詢官田區及官田工業區的IS潛力發現官田區與官田工業區未被妥善再利用的廢棄物為無機性污泥和鉛及其化合物(總鉛)和非有害廢集塵灰或其混合物,利用依廢棄物媒合功能,可以為三者最大產源的業者媒合到潛在再利用業者,根據媒合結果,發現預伴混凝土製造業有不錯的再利用潛力,透過根據行業別媒合功能發現預拌混凝土製造業在官田區周遭善化、麻豆、新營、山上區皆有分布,利用跨區域媒合查詢發現被媒合的廢棄物種類從22種提升至57種,工業區的跨區域媒合也讓整體廢棄物再利用率從60.9%提升至73.6%。從再利用量來看,透過跨區域共生使得官田區許多遠本無法再利用的廢棄物如D-0902(無機性汙泥)、D-1199(一般飛灰或底渣混合物)其再利用量顯著提升,透過提升再利用量可省下的廢棄物成本將近七千萬元,可見透過跨區域媒合確實能讓整體廢棄物再利用量顯著提升並帶來經濟效益。
此資訊系統預期將可展現廢棄物在產業間交換與再利用的現況與機會,促進台灣產業共生發展。
Industrial Symbiosis (IS) is an ecosystem-like industrial cooperation model. Waste produced by an industry can be used as material in another industry. The lack of information between operators limits the identification of symbiosis opportunities. Many studies have found that information tools have great potential in solving information barriers and promoting industrial symbiosis. Based on Taiwan's waste input and output database, this study developed an IS information system, which includes five application functions designed for different query needs.
To verify that this IS tools developed in this study can effectively find IS potential, Tainan Guantian is selected as the object of the regional case study. Use the regional matching function to query the IS potential of Guantian District, the wastes that have not been properly reused are inorganic sludge, lead and its compounds. According to the function of waste matching results, it is found that the pre-mixed concrete manufacturing industry has good reusing potential. There are ready-mixed concrete manufacturing industries in the Guantian, Shanhua, Madou, Xinying and Shanshang districts. The cross-regional matching of industrial parks has increased the overall waste recycling rate from 60.9% to 73.6%. In terms of the amount of reuse, through cross-regional symbiosis, many wastes in Guantian District that could not be reused, such as D-0902 and D-1199, are reused. The waste cost saved by increasing the amount of reuse is nearly 40 million NTD. It can be seen that cross-regional matching can bring economic benefits.
Aid, G., Brandt, N., Lysenkova, M., & Smedberg, N. (2015). Looplocal – a heuristic visualization tool to support the strategic facilitation of industrial symbiosis. Journal of Cleaner Production, 98, 328-335. doi:10.1016/j.jclepro.2014.08.012
Álvarez, R., & Ruiz-Puente, C. (2017). Development of the Tool SymbioSyS to Support the Transition Towards a Circular Economy Based on Industrial Symbiosis Strategies. Waste and Biomass Valorization, 8(5), 1521-1530. doi:10.1007/s12649-016-9748-1
Angelis-Dimakis, A., Arampatzis, G., Pieri, T., Solomou, K., Dedousis, P., & Apostolopoulos, G. (2021). SWAN platform: A web-based tool to support the development of industrial solid waste reuse business models. Waste Management & Research: The Journal for a Sustainable Circular Economy, 39(3), 489-498. doi:10.1177/0734242x21989413
Ashton, W. S. (2009). The Structure, Function, and Evolution of a Regional Industrial Ecosystem. Journal of Industrial Ecology, 13(2), 228-246. doi:10.1111/j.1530-9290.2009.00111.x
Ashton, W. S. (2011). Managing Performance Expectations of Industrial Symbiosis. Business Strategy and the Environment, 20(5), 297-309. doi:10.1002/bse.696
Baas, L. (2011). Planning and Uncovering Industrial Symbiosis: Comparing the Rotterdam and Östergötland regions. Business Strategy and the Environment, 20(7), 428-440. doi:10.1002/bse.735
Bacudio, L. R., Benjamin, M. F. D., Eusebio, R. C. P., Holaysan, S. A. K., Promentilla, M. A. B., Yu, K. D. S., & Aviso, K. B. (2016). Analyzing barriers to implementing industrial symbiosis networks using DEMATEL. Sustainable Production and Consumption, 7, 57-65. doi:10.1016/j.spc.2016.03.001
Bain, A., Shenoy, M., Ashton, W., & Chertow, M. (2010). Industrial symbiosis and waste recovery in an Indian industrial area. Resources, Conservation and Recycling, 54(12), 1278-1287. doi:10.1016/j.resconrec.2010.04.007
Bichraoui, N., Guillaume, B., & Halog, A. (2013). Agent-based Modelling Simulation for the Development of an Industrial Symbiosis - Preliminary Results. Procedia Environmental Sciences, 17, 195-204. doi:10.1016/j.proenv.2013.02.029
Boix, M., Montastruc, L., Azzaro-Pantel, C., & Domenech, S. (2015). Optimization methods applied to the design of eco-industrial parks: a literature review. Journal of Cleaner Production, 87, 303-317. doi:10.1016/j.jclepro.2014.09.032
Bostock, M., Ogievetsky, V., & Heer, J. (2011). D³ Data-Driven Documents. IEEE Transactions on Visualization and Computer Graphics, 17(12), 2301-2309. doi:10.1109/tvcg.2011.185
Chen, P.-C., & Liu, K.-H. (2021). Development of an interactive industrial symbiosis query system with structured industrial waste database in Taiwan. Journal of Cleaner Production, 297, 126673. doi:https://doi.org/10.1016/j.jclepro.2021.126673
Chertow, M., & Park, J. (2016). Scholarship and Practice in Industrial Symbiosis: 1989–2014. In (pp. 87-116): Springer International Publishing.
Chertow, M. R. (2000). Industrial Symbiosis: Literature and Taxonomy. Annual Review of Energy and the Environment, 25(1), 313-337. doi:10.1146/annurev.energy.25.1.313
Chertow, M. R., Ashton, W. S., & Espinosa, J. C. (2008). Industrial Symbiosis in Puerto Rico: Environmentally Related Agglomeration Economies. Regional Studies, 42(10), 1299-1312. doi:10.1080/00343400701874123
Cutaia, L., Morabito, R., Barberio, G., Mancuso, E., Brunori, C., Spezzano, P., . . . Cappello, F. (2014). The Project for the Implementation of the Industrial Symbiosis Platform in Sicily: The Progress After the First Year of Operation. In (pp. 205-214): Springer International Publishing.
Doménech, T., & Davies, M. (2011). The role of Embeddedness in Industrial Symbiosis Networks: Phases in the Evolution of Industrial Symbiosis Networks. Business Strategy and the Environment, 20(5), 281-296. doi:10.1002/bse.695
Domenech, T. (2010). Social aspects of industrial symbiosis networks.
Domenech, T., Bleischwitz, R., Doranova, A., Panayotopoulos, D., & Roman, L. (2019). Mapping Industrial Symbiosis Development in Europe_ typologies of networks, characteristics, performance and contribution to the Circular Economy. Resources, Conservation and Recycling, 141, 76-98. doi:10.1016/j.resconrec.2018.09.016
Elabras Veiga, L. B., & Magrini, A. (2009). Eco-industrial park development in Rio de Janeiro, Brazil: a tool for sustainable development. Journal of Cleaner Production, 17(7), 653-661. doi:https://doi.org/10.1016/j.jclepro.2008.11.009
Fraccascia, L. (2020). Quantifying the direct network effect for online platforms supporting industrial symbiosis: an agent-based simulation study. Ecological Economics, 170, 106587. doi:10.1016/j.ecolecon.2019.106587
Fraccascia, L., Giannoccaro, I., & Albino, V. (2017). Rethinking Resilience in Industrial Symbiosis: Conceptualization and Measurements. Ecological Economics, 137, 148-162. doi:https://doi.org/10.1016/j.ecolecon.2017.02.026
Fraccascia, L., & Yazan, D. M. (2018). The role of online information-sharing platforms on the performance of industrial symbiosis networks. Resources, Conservation and Recycling, 136, 473-485. doi:https://doi.org/10.1016/j.resconrec.2018.03.009
Ghali, M. R., Frayret, J.-M., & Ahabchane, C. (2017). Agent-based model of self-organized industrial symbiosis. Journal of Cleaner Production, 161, 452-465. doi:10.1016/j.jclepro.2017.05.128
Golev, A., Corder, G. D., & Giurco, D. P. (2015). Barriers to Industrial Symbiosis: Insights from the Use of a Maturity Grid. Journal of Industrial Ecology, 19(1), 141-153. doi:10.1111/jiec.12159
Grant, G. B., Seager, T. P., Massard, G., & Nies, L. (2010). Information and Communication Technology for Industrial Symbiosis. Journal of Industrial Ecology, 14(5), 740-753. doi:10.1111/j.1530-9290.2010.00273.x
Holland, J. H. (2002). Complex Adaptive Systems and Spontaneous Emergence. In (pp. 25-34): Physica-Verlag HD.
International Synergies (2019). SYNERGie 4.0 preview screen.
Retrieved from https://www.international-synergies.com/what-we-do/software/ .
Kerdlap, P., Low, J. S. C., & Ramakrishna, S. (2020). Life cycle environmental and economic assessment of industrial symbiosis networks: a review of the past decade of models and computational methods through a multi-level analysis lens. The International Journal of Life Cycle Assessment, 25(9), 1660-1679. doi:10.1007/s11367-020-01792-y
Kincaid, J., & Overcash, M. (2001). Industrial Ecosystem Development at the Metropolitan Level. Journal of Industrial Ecology, 5(1), 117-126. doi:10.1162/108819801753358535
Kalundborg Symbiosis (2018). Kalundborg symbiosis model.
Retrieved from http://www.symbiosis.dk/en/ . (June 15,2021)
Lütje, A., & Wohlgemuth, V. (2020). Requirements Engineering for an Industrial Symbiosis Tool for Industrial Parks Covering System Analysis, Transformation Simulation and Goal Setting. Administrative Sciences, 10(1), 10. doi:10.3390/admsci10010010
Liu, C., Côté, R. P., & Zhang, K. (2015). Implementing a three-level approach in industrial symbiosis. Journal of Cleaner Production, 87, 318-327. doi:10.1016/j.jclepro.2014.09.067
Liwarska-Bizukojc, E., Bizukojc, M., Marcinkowski, A., & Doniec, A. (2009). The conceptual model of an eco-industrial park based upon ecological relationships. Journal of Cleaner Production, 17(8), 732-741. doi:https://doi.org/10.1016/j.jclepro.2008.11.004
Lybæk, R., Christensen, T. B., & Thomsen, T. P. (2021). Enhancing policies for deployment of Industrial symbiosis – What are the obstacles, drivers and future way forward? Journal of Cleaner Production, 280, 124351. doi:10.1016/j.jclepro.2020.124351
Massard, G., & Erkman, S. (2009). A web-GIS tool for industrial symbiosis-Preliminary results and perspectives. Paper presented at the EnviroInfo (2).
Mathews, J. A., & Tan, H. (2011). Progress Toward a Circular Economy in China. Journal of Industrial Ecology, 15(3), 435-457. doi:10.1111/j.1530-9290.2011.00332.x
Mirata, M. (2004). Experiences from early stages of a national industrial symbiosis programme in the UK: determinants and coordination challenges. Journal of Cleaner Production, 12(8), 967-983. doi:https://doi.org/10.1016/j.jclepro.2004.02.031
Sakr, D., Baas, L., El-Haggar, S., & Huisingh, D. (2011). Critical success and limiting factors for eco-industrial parks: global trends and Egyptian context. Journal of Cleaner Production, 19(11), 1158-1169. doi:10.1016/j.jclepro.2011.01.001
SHAREBOX – SECURE SHARING (2018). SHAREBOX preview screen.
Retrieved from http://sharebox-project.eu/ . (June 15,2021)
Song, X., Geng, Y., Dong, H., & Chen, W. (2018). Social network analysis on industrial symbiosis: A case of Gujiao eco-industrial park. Journal of Cleaner Production, 193, 414-423. doi:10.1016/j.jclepro.2018.05.058
Sun, L., Li, H., Dong, L., Fang, K., Ren, J., Geng, Y., . . . Liu, Z. (2017). Eco-benefits assessment on urban industrial symbiosis based on material flows analysis and emergy evaluation approach: A case of Liuzhou city, China. Resources, Conservation and Recycling, 119, 78-88. doi:10.1016/j.resconrec.2016.06.007
van Capelleveen, G., Amrit, C., Yazan, D. M., & Zijm, H. (2019). The recommender canvas: A model for developing and documenting recommender system design. Expert Systems with Applications, 129, 97-117. doi:https://doi.org/10.1016/j.eswa.2019.04.001
Van Capelleveen, G., Van Wieren, J., Amrit, C., Yazan, D. M., & Zijm, H. (2021). Exploring recommendations for circular supply chain management through interactive visualisation. Decision Support Systems, 140, 113431. doi:10.1016/j.dss.2020.113431
Yazan, D. M., Yazdanpanah, V., & Fraccascia, L. (2020). Learning strategic cooperative behavior in industrial symbiosis: A game‐theoretic approach integrated with agent‐based simulation. Business Strategy and the Environment, 29(5), 2078-2091. doi:10.1002/bse.2488
Yeo, Z., Masi, D., Low, J. S. C., Ng, Y. T., Tan, P. S., & Barnes, S. (2019). Tools for promoting industrial symbiosis: A systematic review. Journal of Industrial Ecology, 23(5), 1087-1108. doi:10.1111/jiec.12846
Yuan, Z., & Shi, L. (2009). Improving enterprise competitive advantage with industrial symbiosis: case study of a smeltery in China. Journal of Cleaner Production, 17(14), 1295-1302. doi:10.1016/j.jclepro.2009.03.016
官田工業區服務中心(民國110年12月)。官田工業區簡介。
台灣工業用地供給與服務資訊網(民國111年5月)。官田工業區介紹。
取自:https://idbpark.moeaidb.gov.tw/Environ/More?id=279#
產業循環經濟資訊平台(民國111年3月)。循環共生媒合區。
取自:https://idbpark.moeaidb.gov.tw/Environ/More?id=279#
維基百科 官田區地理位置圖。
取自:https://zh.m.wikipedia.org/zh-tw/%E5%AE%98%E7%94%B0%E5%8D%80
經濟部工業局, 廢棄物交換中心(民國111年4月)事業廢棄物交換資訊服務中心執行成果。取自:https://riw.tgpf.org.tw/exchange/
校內:2027-09-13公開