| 研究生: |
梁炎燦 Leung, Yim-Tsan |
|---|---|
| 論文名稱: |
建構一可調控奈米微粒濃度之呼吸暴露系統 Development of a controllable nose-only inhalation exposure system for nanoparticles |
| 指導教授: |
林明彥
Lin, Ming-Yeng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 環境醫學研究所 Department of Environmental and Occupational Health |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 奈米碳黑 、鼻腔暴露艙 、電腦程式 、數目濃度 、粒徑分佈 |
| 外文關鍵詞: | Carbon Black, Nanoparticles, Nose-only Inhalation Chamber |
| 相關次數: | 點閱:82 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
碳黑是最為廣泛生產與應用的奈米材料,亦是工作場所中奈米微粒的主要來源。由於人體暴露於空氣中奈米微粒(<100 nm)的途徑主要為吸入,而通過呼吸暴露研究較能反映真實的奈米微粒危害。為了準確地評估暴露於奈米微粒的健康影響,穩定產生固定濃度及分佈一致的氣膠是暴露時的關鍵。然而呼吸暴露系統的相關研究有限,缺乏穩定產生高再現性奈米微粒數目濃度及粒徑分佈之氣膠的暴露系統,亦甚少出現可隨時間改變,週期性產生峰值濃度奈米微粒之暴露系統。因此,本研究以建構一可調控奈米微粒濃度之呼吸暴露系統為研究目標。本研究開發了兩種暴露模式:平穩濃度暴露模式及峰值濃度暴露模式。平穩濃度暴露模式旨在於呼吸暴露實驗中提供穩定濃度之奈米微粒,使用卡里森6孔霧化器,以高壓氣體將碳黑懸浮液噴成霧狀,乾燥水份,生成奈米碳黑微粒。峰值濃度暴露模式則是使用自行編寫電腦程式,以輔助控制質量流量控制器,週期性產生不同的供氣流量,從而產生具峰值濃度的奈米碳黑微粒。實驗結果顯示,在平穩濃度暴露模式下,本呼吸暴露系統可穩定3小時產生高,中,低三種不同濃度的奈米碳黑微粒,數目濃度變化幅度均小於5 %,微粒分佈型態為單峰分佈,三種濃度的幾何平均粒徑介於67.97至71.02 nm。而峰值濃度暴露模式下,穩定可產生總暴露劑量為 3.24×10^9 #/cm^3的奈米碳黑微粒,數目濃度變化幅度均小於10 %,粒徑分佈亦為單峰分佈,幾何平均粒徑為68.00 ± 3.08 nm。各項測試結果均符合OECD之呼吸暴露實驗指引之規範。而實驗值與理論值間的誤差極小,RMSE為3.62×10^4 ± 1.64×10^4 #/cm^3,表示本系統可按預設目標週期性地產生峰值濃度。綜合以上,本呼吸暴露系統結合電腦程式開發了兩種暴露模式,固定濃度暴露模式可產生粒徑相近且濃度穩定的奈米碳黑微粒,而峰值濃度暴露模式可產生可週期性變化濃度之奈米微粒,並可通過調整控制程式的參數控制濃度峰值的形狀,從而成生具不同振幅或出現頻率的峰值。
Carbon black is known as the main source of nanoparticles in the workplace. Inhalation exposure experiments were commonly used in toxicity of nanoparticles because of the reason that the main exposure route of humans to nanoparticles is inhalation. However, there lack nose-only inhalation exposure systems that can produce the aerosols of nanoparticles with stable concentration. Hence, here we aimed to develop an inhalation chamber that could generate different concentrations of nanoparticles. In this study, we developed an adjustable exposure system, and two exposure modes such as a constant concentration exposure mode and a peak exposure mode. The constant concentration exposure mode was designed to provide a stable concentration of nanoparticles in the respiratory exposure experiments. The test particles were atomized by using a 6-jet Collison (BGI Inc, Massachusetts, USA). The peak exposure mode used a self-written computer program to assist for controlling the mass flow controller (MC-50LPM, Alicat Scientific, Arizona, USA) to periodically generate the peak concentrations. A scanning mobility particle sizer (SMPS; CPC model 3010 and DMA model 3081, TSI Inc, Minnesota, USA) was used to measure the characteristics of aerosol. The test results showed that the inhalation exposure system produced three different concentrations of the high, medium, and low nano-carbon black particles for 3 h in the steady concentration exposure mode, with a variation of less than 5% in the number of concentrations. The geometric mean particle size for the three concentrations ranged from 67.97 - 71.02 nm. In the periodic mode, a total exposure dose of 3.24 10^9 #/cm^3 of carbon black nanoparticles was consistently produced, with a variation of less than 10% in the number concentration and a single peak distribution pattern with a geometric mean of 68.00 ± 3.08 nm. The RMSE of 3.62 10^4 ± 1.64 10^4 #/cm^3 indicated that the system could generate the peak concentrations periodically according to the preset targets. In summary, the inhalation exposure system combined with the computer program can produce constant and periodic modes. The constant mode could produce a stable concentration of carbon black nanoparticles of similar size. The periodic mode produced nanoparticles with periodically changing concentration and the shape of the peak concentration could be controlled by adjusting the control program parameters to produce the peaks of different amplitude or frequency.
1. 台灣行政院環境保護署. 2020. 2020年台灣溫體氣體排放清冊報告.
2. 台灣勞工安全衛生研究所. 2013. 輪胎製造業職業安全衛生調查研究.
3. 陳惟暄. 2020. 建立新型可由電腦程式控制的氣膠生成與呼吸暴露系統暴露於大鼠的呼吸毒理研究.
4. Afshari AA, McKinney W, Cumpston JL, Leonard HD, Cumpston JB, Meighan TG, et al. 2022. Development of a thermal spray coating aerosol generator and inhalation exposure system. Toxicology Reports 9:126-135.
5. Alasmari F, Crotty Alexander LE, Drummond CA, Sari Y. 2018. A computerized exposure system for animal models to optimize nicotine delivery into the brain through inhalation of electronic cigarette vapors or cigarette smoke. Saudi Pharmaceutical Journal 26:622-628.
6. Asgharian B. 2022. Multiple path particle dosimetry (mppd) model and its applications.
7. Chen. 2015. Inhalation toxicology methods: The generation and characterization of exposure atmospheres and inhalational exposures. Curr Protoc Toxicol 63:24 24 21-24 24 23.
8. Chen R. 2015. Airborne nanoparticle pollution in a wire electrical discharge machining workshop and potential health risks. Aerosol and Air Quality Research 15.
9. Cheng YS, Bowen L, Rando RJ, Postlethwait EM, Squadrito GL, Matalon S. 2010. Exposing animals to oxidant gases: Nose only vs. Whole body. Proc Am Thorac Soc 7:264-268.
10. Chu C, Zhou L, Xie H, Pei Z, Zhang M, Wu M, et al. 2019. Pulmonary toxicities from a 90-day chronic inhalation study with carbon black nanoparticles in rats related to the systemical immune effects. Int J Nanomedicine 14:2995-3013.
11. Cooper AE, Ferguson D, Grime K. 2012. Optimisation of dmpk by the inhaled route: Challenges and approaches. Curr Drug Metab 13:457-473.
12. Curbani F, de Oliveira Busato F, do Nascimento MM, Olivieri DN, Tadokoro CE. 2019. Inhale, exhale: Why particulate matter exposure in animal models are so acute? Environmental Pollution 251:230-237.
13. Driscoll KE, Costa DL, Hatch G, Henderson R, Oberdorster G, Salem H, et al. 2000. Intratracheal instillation as an exposure technique for the evaluation of respiratory tract toxicity: Uses and limitations. Toxicological Sciences 55:24-35.
14. Duhamel P, Vetterli M. 1990. Fast fourier transforms: A tutorial review and a state of the art. Signal Processing 19:259-299.
15. EL E. 2014. Carbon black exposure and cardiopulmonary effects among egyptian workers. Egyptian Journal of Occupational Medicine 38:43-62.
16. Elder A, Gelein R, Finkelstein JN, Driscoll KE, Harkema J, Oberdörster Gn. 2005. Effects of subchronically inhaled carbon black in three species. I. Retention kinetics, lung inflammation, and histopathology. Toxicological Sciences 88:614-629.
17. Erdely A, Dahm M, Chen BT, Zeidler-Erdely PC, Fernback JE, Birch ME, et al. 2013. Carbon nanotube dosimetry: From workplace exposure assessment to inhalation toxicology. Part Fibre Toxicol 10:53.
18. Fito-López C, Domat-Rodriguez M, Van Tongeren M, Spankie S. 2016. Nanoparticle release in indoor workplaces: Emission sources, release determinants and release categories based on workplace measurements. In: Indoor and outdoor nanoparticles: Determinants of release and exposure scenarios, (Viana M, ed). Cham:Springer International Publishing, 93-126.
19. Franck U, Odeh S, Wiedensohler A, Wehner B, Herbarth O. 2011. The effect of particle size on cardiovascular disorders—the smaller the worse. Science of the Total Environment 409:4217-4221.
20. Gomez V, Irusta S, Balas F, Santamaria J. 2013. Generation of tio2 aerosols from liquid suspensions: Influence of colloid characteristics. Aerosol Science and Technology 47:1383-1392.
21. Grassian VH, O'Shaughnessy P T, Adamcakova-Dodd A, Pettibone JM, Thorne PS. 2007. Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ Health Perspect 115:397-402.
22. Gummesson K, Andersson I-M, Rosén G. 2015. Short-term variation in occupational exposure to air contaminants. Journal of Occupational and Environmental Hygiene 12:294-301.
23. Hailemariam Y, Amiri HM, Nugent K. 2012. Acute respiratory symptoms following massive carbon black exposure. Occupational Medicine 62:578-580.
24. Hamdaoui Q, Bencsik A, Flamant F, Delcour S, Macé T, Vaslin-Reimann S, et al. 2021. Metrological characterization of an aerosol exposure chamber to explore the inhalation effects of the combination of paraquat and tio2 nano-objects. Aerosol and Air Quality Research 21:200626.
25. Hashish AH, Elshaer NS, Meleis DE. 2021. Coronary heart disease risk assessment among workers in a carbon black factory. Alexandria Journal of Medicine 57:224-229.
26. Hayes AJ, Bakand S. 2014. Toxicological perspectives of inhaled therapeutics and nanoparticles. Expert opinion on drug metabolism & toxicology 10:933-947.
27. Hinds WC. 1999. Aerosol technology properties, behavior, and measurement ofairborne particles second edition.
28. Hiraku Y, Nishikawa Y, Ma N, Afroz T, Mizobuchi K, Ishiyama R, et al. 2017. Nitrative DNA damage induced by carbon-black nanoparticles in macrophages and lung epithelial cells. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 818:7-16.
29. Hou J, Wang X, Hayat T, Wang X. 2017. Ecotoxicological effects and mechanism of cuo nanoparticles to individual organisms. Environmental Pollution 221:209-217.
30. IARC. 2010a. Iarc working group on the evaluation of carcinogenic risks to humans. Carbon black, titanium dioxide, and talc.
31. IARC. 2010b. Monographs on the evaluation of carcinogenic risks to humans–carbon black, titanium dioxide and talc.World health organization; Lyon.
32. Jackson P, Hougaard KS, Boisen AMZ, Jacobsen NR, Jensen KA, Møller P, et al. 2012. Pulmonary exposure to carbon black by inhalation or instillation in pregnant mice: Effects on liver DNA strand breaks in dams and offspring. Nanotoxicology 6:486-500.
33. Jamieson PD, Porter JR, Wilson DR. 1991. A test of the computer-simulation model archwheat1 on wheat crops grown in new-zealand. Field Crops Research 27:337-350.
34. Kim B, Lee JS, Choi BS, Park SY, Yoon JH, Kim H. 2013. Ultrafine particle characteristics in a rubber manufacturing factory. Ann Occup Hyg 57:728-739.
35. Kim JK, Kang MG, Cho HW, Han JH, Chung YH, Rim KT, et al. 2011. Effect of nano-sized carbon black particles on lung and circulatory system by inhalation exposure in rats. Saf Health Work 2:282-289.
36. Klems JP, Pennington MR, Zordan CA, Johnston MV. 2010. Ultrafine particles near a roadway intersection: Origin and apportionment of fast changes in concentration. Environmental Science & Technology 44:7903-7907.
37. Kobayashi T, Oshima Y, Tsubokura Y, Kayashima T, Nakai M, Imatanaka N, et al. 2019. Standardization of intratracheal instillation study of manufactured nanomaterials. In Vivo Inhalation Toxicity Screening Methods for Manufactured Nanomaterials:107-122.
38. Kurjane N, Zvagule T, Reste J, Martinsone Z, Pavlovska I, Martinsone I, et al. 2017. The effect of different workplace nanoparticles on the immune systems of employees. Journal of Nanoparticle Research 19:320.
39. Larcombe AN, Phan JA, Kicic A, Perks KL, Mead-Hunter R, Mullins BJ. 2014. Route of exposure alters inflammation and lung function responses to diesel exhaust. Inhalation Toxicology 26:409-418.
40. Leong BK, Coombs JK, Sabaitis CP, Rop DA, Aaron CS. 1998. Quantitative morphometric analysis of pulmonary deposition of aerosol particles inhaled via intratracheal nebulization, intratracheal instillation or nose-only inhalation in rats. J Appl Toxicol 18:149-160.
41. Li X, Yan C, Patterson RF, Zhu Y, Yao X, Zhu Y, et al. 2016. Modeled deposition of fine particles in human airway in beijing, china. Atmospheric Environment 124:387-395.
42. Lucci F, Tan WT, Krishnan S, Hoeng J, Vanscheeuwijck P, Jaeger R, et al. 2020. Experimental and computational investigation of a nose-only exposure chamber. Aerosol Science and Technology 54:277-290.
43. Madureira J, Slezakova K, Silva AI, Lage B, Mendes A, Aguiar L, et al. 2020. Assessment of indoor air exposure at residential homes: Inhalation dose and lung deposition of pm10, pm2.5 and ultrafine particles among newborn children and their mothers. Science of The Total Environment 717:137293.
44. Manojkumar N, Srimuruganandam B, Shiva Nagendra SM. 2019. Application of multiple-path particle dosimetry model for quantifying age specified deposition of particulate matter in human airway. Ecotoxicology and Environmental Safety 168:241-248.
45. Markets Ra. 2021. Nanomaterials market size, market share, application analysis, regional outlook, growth trends, key players, competitive strategies and forecasts, 2021 to 2029.
46. Martin J, Bello D, Bunker K, Shafer M, Christiani D, Woskie S, et al. 2015. Occupational exposure to nanoparticles at commercial photocopy centers. Journal of Hazardous Materials 298:351-360.
47. May KR. 1973. The collison nebulizer: Description, performance and application. Journal of Aerosol Science 4:235-243.
48. Maynard AD, Aitken RJ. 2007. Assessing exposure to airborne nanomaterials: Current abilities and future requirements. Nanotoxicology 1:26-41.
49. McKinney W, Chen B, Frazer D. 2009. Computer controlled multi-walled carbon nanotube inhalation exposure system. Inhalation Toxicology 21:1053-1061.
50. McKinney W, Chen B, Schwegler-Berry D, Frazer DG. 2013. Computer-automated silica aerosol generator and animal inhalation exposure system. INHALATION TOXICOLOGY 25:363-372.
51. Mikołajczyk U, Bujak-Pietrek S, Szadkowska-Stańczyk I. 2015. Worker exposure to ultrafine particles during carbon black treatment. Medycyna Pracy 66:317-326.
52. Morimoto Y, Horie M, Kobayashi N, Shinohara N, Shimada M. 2013. <inhalation toxicity assessment of carbon-based nanoparticles.Pdf>. Acc Chem Res 46:770-781.
53. Morimoto Y, Izumi H, Yoshiura Y, Tomonaga T, Lee B-W, Okada T, et al. 2016. Comparison of pulmonary inflammatory responses following intratracheal instillation and inhalation of nanoparticles. Nanotoxicology 10:607-618.
54. Moss OR, James RA, Asgharian B. 2006. Influence of exhaled air on inhalation exposure delivered through a directed-flow nose-only exposure system. Inhal Toxicol 18:45-51.
55. Neghab M, Mohraz MH, Hassanzadeh J. 2011. Symptoms of respiratory disease and lung functional impairment associated with occupational inhalation exposure to carbon black dust. J Occup Health 53:432-438.
56. Nel A, Xia T, Mädler L, Li N. 2006. Toxic potential of materials at the nanolevel. science 311:622-627.
57. Niranjan R, Thakur AK. 2017. The toxicological mechanisms of environmental soot (black carbon) and carbon black: Focus on oxidative stress and inflammatory pathways. Frontiers in immunology 8:763.
58. Oberbek P, Kozikowski P, Czarnecka K, Sobiech P, Jakubiak S, Jankowski T. 2019. Inhalation exposure to various nanoparticles in work environment—contextual information and results of measurements. Journal of Nanoparticle Research 21:222.
59. Oberdorster G. 1993. Lung dosimetry: Pulmonary clearance of inhaled
particles. Aerosol Science and Technology 18:279-289.
60. Oberdörster G, Oberdörster E, Oberdörster J. 2005. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environmental health perspectives 113:823-839.
61. OECD. 2009. Oecd environment, health and safety publications series on testing and assessment.Pdf.
62. Oyabu T, Morimoto Y, Izumi H, Yoshiura Y, Tomonaga T, Lee BW, et al. 2016. Comparison between whole-body inhalation and nose-only inhalation on the deposition and health effects of nanoparticles. Environ Health Prev Med 21:42-48.
63. Phalen RF ML, Oldham MJ. 2013. Nose-only aerosol exposure systems design, operation, and performance.
64. Pirela SV, Bhattacharya K, Wang Y, Zhang Y, Wang G, Christophi CA, et al. 2019. A 21-day sub-acute, whole-body inhalation exposure to printer-emitted engineered nanoparticles in rats: Exploring pulmonary and systemic effects. NanoImpact 15:100176.
65. Pujalté I, Serventi A, Noël A, Dieme D, Haddad S, Bouchard M. 2017. Characterization of aerosols of titanium dioxide nanoparticles following three generation methods using an optimized aerosolization system designed for experimental inhalation studies. Toxics 5:14.
66. Puri A. 2010. Nanoparticles: Crossing barriers and membrane interactions. Molecular membrane biology 27:213-214.
67. Roco MC. 2011. The long view of nanotechnology development: The national nanotechnology initiative at 10 years. Journal of Nanoparticle Research 13:427-445.
68. Sager TM, Castranova V. 2009. Surface area of particle administered versus mass in determining the pulmonary toxicity of ultrafine and fine carbon black: Comparison to ultrafine titanium dioxide. Particle and Fibre Toxicology 6:15.
69. Sahu D, Kannan GM, Vijayaraghavan R. 2014. Carbon black particle exhibits size dependent toxicity in human monocytes. Int J Inflam 2014:827019.
70. Saputra D, Yoon JH, Park H, Heo Y, Yang H, Lee EJ, et al. 2014. Inhalation of carbon black nanoparticles aggravates pulmonary inflammation in mice. Toxicol Res 30:83-90.
71. Seipenbusch M, Yu M, Asbach C. 2014. Chapter 4. From source to dose: Emission, transport, aerosol dynamics and dose assessment for workplace aerosol exposure. Handbook of nanosafety: Measurement, exposure and toxicology Amsterdam (NL): Elsevier p 191.
72. Shao XM, Lopez B, Nathan D, Wilson J, Bankole E, Tumoyan H, et al. 2019. A mouse model for chronic intermittent electronic cigarette exposure exhibits nicotine pharmacokinetics resembling human vapers. Journal of Neuroscience Methods 326:108376.
73. Shimada M, Wang W-N, Okuyama K, Myojo T, Oyabu T, Morimoto Y, et al. 2009. Development and evaluation of an aerosol generation and supplying system for inhalation experiments of manufactured nanoparticles. Environmental Science & Technology 43:5529-5534.
74. Siemiatycki J e. 1991. Risk factors for cancer in the workplace.
75. Smith T. 2001. Studying peak exposure: Toxicology and exposure statistics. X2001–Exposure assessment in epidemiology and practice Stockholm: National Institute for Working Life:207-209.
76. Sorahan T, Harrington JM. 2007. A “lugged” analysis of lung cancer risks in uk carbon black production workers, 1951–2004. American journal of industrial medicine 50:555-564.
77. Sun J. 2019. Research on vocal sounding based on spectrum image analysis. EURASIP Journal on Image and Video Processing 2019.
78. Tang J, Cheng W, Gao J, Li Y, Yao R, Rothman N, et al. 2020. Occupational exposure to carbon black nanoparticles increases inflammatory vascular disease risk: An implication of an ex vivo biosensor assay. Particle and Fibre Toxicology 17:47.
79. Televisory. 2018. Carbon black industry, strong potential for supernormal profitability?
80. Thapa N, Tomasi SE, Cox-Ganser JM, Nett RJ. 2019. Non-malignant respiratory disease among workers in the rubber manufacturing industry: A systematic review and meta-analysis. Am J Ind Med 62:367-384.
81. Tsai CJ, Huang CY, Chen SC, Ho CE, Huang CH, Chen CW, et al. 2011. Exposure assessment of nano-sized and respirable particles at different workplaces. Journal of Nanoparticle Research 13:4161-4172.
82. Turner PV, Brabb T, Pekow C, Vasbinder MA. 2011. Administration of substances to laboratory animals: Routes of administration and factors to consider. Journal of the American Association for Laboratory Animal Science : JAALAS 50:600-613.
83. Valavanidis A, Vlachogianni T, Fiotakis K, Loridas S. 2013. Pulmonary oxidative stress, inflammation and cancer: Respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. Int J Environ Res Public Health 10:3886-3907.
84. Viitanen A-K, Uuksulainen S, Koivisto AJ, Hämeri K, Kauppinen T. 2017. Workplace measurements of ultrafine particles—a literature review. Annals of Work Exposures and Health 61:749-758.
85. Virji MA, Kurth L. 2021. Peak inhalation exposure metrics used in occupational epidemiologic and exposure studies. Front Public Health 8:611693-611693.
86. Wang Y-F, Tsai P-J, Chen C-W, Chen D-R, Hsu D-J. 2010. Using a modified electrical aerosol detector to predict nanoparticle exposures to different regions of the respiratory tract for workers in a carbon black manufacturing industry. Environmental Science & Technology 44:6767-6774.
87. Warheit DB. 2004. Nanoparticles: Health impacts? Materials today 7:32-35.
88. Xing M, Zou H, Gao X, Chang B, Tang S, Zhang M. 2015. Workplace exposure to airborne alumina nanoparticles associated with separation and packaging processes in a pilot factory. Environ Sci Process Impacts 17:656-666.
89. Yang Y, Mao P, Wang ZP, Zhang JH. 2012. Distribution of nanoparticle number concentrations at a nano-tio2 plant. Aerosol and Air Quality Research 12:934-940.
90. Zecchi R, Trevisani M, Pittelli M, Pedretti P, Manni ME, Pieraccini G, et al. 2013. Impact of drug administration route on drug delivery and distribution into the lung: An imaging mass spectrometry approach. Eur J Mass Spectrom (Chichester) 19:475-482.
91. Zhang R, Dai Y, Zhang X, Niu Y, Meng T, Li Y, et al. 2014. Reduced pulmonary function and increased pro-inflammatory cytokines in nanoscale carbon black-exposed workers. Particle and fibre toxicology 11:1-14.
92. Zhang R, Zhang X, Gao S, Liu R. 2019. Assessing the in vitro and in vivo toxicity of ultrafine carbon black to mouse liver. Science of The Total Environment 655:1334-1341.
93. Zou H, Zhang Q, Xing M, Gao X, Zhou L, Tollerud DJ, et al. 2015. Relationships between number, surface area, and mass concentrations of different nanoparticles in workplaces. Environ Sci Process Impacts 17:1470-1481.
校內:2027-09-22公開