| 研究生: |
黃劔麒 Huang, Chien-chi |
|---|---|
| 論文名稱: |
動態漸進式三維模型變形 Dynamic and Progressive Three Dimensional Model Metamorphosis |
| 指導教授: |
李同益
Lee, Tong-Yee |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 移動點 、變形 、三維模型變形 、漸進式 、攤平 |
| 外文關鍵詞: | dynamic, progressive, metamorphosis, WCVD |
| 相關次數: | 點閱:64 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文提出一個新的三維(三角形)模型變形演算法,在本論文的演算法中,在此處動態可以解釋成兩個方面,第一個是動態的增加與移除內插模型的頂點數目,因此內插模型在變形的過程中頂點的數目不再是一樣的而是會變動的,第二個解釋則是動態的移動頂點,因此頂點不再是固定的而是可以移動的。
本論文在動態增加或移除頂點的演算法中,是由一個包含多種條件的控制圖來決定增加和移除頂點的順序,主要是由三個因素所決定,曲率(Curvature Map)、面積變化(Deformed Area Map)與距離( Distance Map),再透過對此控制圖的運算,我們可以這些條件的變化量,然後以變形過程中變化量要均勻的考量下,便可以將每個頂點要加入或移除的順序排來,藉由此演算法,我們不僅可以得到平滑的變形過程,也可以適當的控制內插模型的三角形數目,使得內插出模型應用在其他方面可以更為便利。
而在動態的移動頂點方面,我們使用WCVD(Weighted Centroidal Voronoi Diagram)來動態的移動頂點,由於以往以合併(merge)的方式來做變形,常常會發生原本模型上是一個平面,但是在合併後卻多出了許多的三角形,而這些三角形可以說是多餘且不必要的三角形,因此我們透過WCVD,以及一張類似前面所提到的控制圖,來移動我們的頂點,讓變化量大的地方能有更多的頂點,而變化量小的地方則不需要那麼多的頂點。
藉由上述的兩個演算法,我們得到平順的變形結果與三角形數量合理的內插模型,雖然在變形的過程中需要動態的決定頂點數與移動頂點,但是透過適當的硬體加速與高效率的實作演算法,使得我們的變形演算法依然有很合理的速度。
We propose a novel algorithm for Three Dimensional Model Metamorphosis in this paper. There are two meanings of “Dynamic” here. One meaning is to insert / remove vertices dynamically during the sequence of morphing. Another meaning is to move vertices dynamically during the sequence of morphing. In our algorithm the number of vertices and the position of each vertex are no longer fixed.
During inserting / removing vertices phase, we use a control map to decide the order of each vertex. The control map is composed of curvature map, deformed area map and distance map. In this phase, we can handle the number of vertices (or triangles) in a reasonable range. After this phase, the resulting interpolation models are more suitable for application.
During moving vertices phase, we use the WCVD (Weighted Centoidal Voronoi Diagram) method and another control map to move vertices dynamically on flattened map. By moving vertices to more suitable positions,we get finer interpolation models and smoother sequence of morphing.
In our algorithm, we need to add, remove and move vertices dynamically during the sequence of morphing. By using some of hardware acceleration and highly efficient algorithm, the efficiency of our method is still reasonable.
[1] Alejo Hausner , Simulating Decorative Mosaics , Proceedings of the 28th annual conference on Computer graphics and interactive techniques , pp.573 - 580 , 2001
[2] Arad N.Reisfeld D. Image warping using few anchor points and radial functions. Computer Graphics Forum,vol.14 , no.1, pp.35-46, March 1995
[3] B. Chazelle. Triangulating a simple polygon in linear time. Proc/31st Symp.On Foundations of Computer Science(FOCS),pp. 220-230, 1999
[4] BEIER, T., AND NEELY, S. Feature-based image metamorphosis in Computer Graphic ,, 35-42, 1992.
[5] Bradley A. Payne, Arthur W. Toga, “Distance Field Manipulation of Surface Models, “IEEE Computer Graphics & Applications, pp. 65-71 , Jan. 1992.
[6] Turk, G., O'Brien, J. F., "Shape Transformation Using Variational Implicit Functions." The proceedings of ACM SIGGRAPH 99, pp 335-342 , 1999.
[7] Gregory, A., et al. Feature-based Surface Decomposition for Correspondence and Morphing between Polyhedra. Proc. Computer Animation 98, pp.64-71, , 1998.
[8] H. Hoppe. Progressive meshes. ACM SIGGRAPH , pages 99-108. 1999
[9] HE. T., WANG, S., AND KAUFMAN, A. Wavelet-Based Volume Morphing. In Proceedings of the Conference on Visualization, pp85-92, Oct.1994.
[10] HUGHES, J. F. Scheduled Fourier volume morphing. In Computer Graphics, pp43-46 , 1992.
[11] Jack Goldfeather and Victoria Interrante ,Understanding Errors in Approximating Principal Direction Vectors Course note 23 , ACM SIGGRAPH 2002 .
[12] Jonathan Richard Shewchuk, Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator,First Workshop on Applied Computational Geometry ( Philadelphia , Pennsylvania ) , pp 124-133, May 1996
[13] KANAI, T., SUZUKI, H., AND KIMURA, F. Three-dimensional geometric metamorphosis based on harmonic maps. The Visual Computer 14 , 4, 166-176 , 1998.
[14] Kenneth E. Hoff III, Tim Culver, John Keyser, Ming Lin, and Dinesh Manocha Fast Computation of Generalized Voronoi Diagrams Using Graphics Hardware, ACM SIGGRAPH , pp277 – 286 , 1999
[15] Kent JR, Carlson WE, Parent RE Shape transformation for polyhedra objects. , ACM SIGGRAPH , pp47-54 ,1992
[16] Kent JR, Parent RE, Carlson WE Establishing correspondences by topological merging: a new approach to 3-D shape transformation, Calgary, Canadian Information Processing Society, pp 271-278 ,1991
[17] L.A.Freitag,M.T.Jones,and P.E.Plassmann.An efficient parallel algorithm for mesh smoothing , 4thInt.Meshing Roundtable , pp47-58, 1995
[18] Lee. A. W. F., DOBKIN, D., SWELDENS, W., AND SCHRODER, P. Multiresolution Mesh Morphing. ACM SIGGRAPH, 343-350,1999.
[19] M. de Berg, M. van Krefeld, M. Overmars, and O. Schwarzkopf. Computational Geometry – Algorithms and Applications. Springer, Berlin, 1997
[20] Marc Alexa (Technische Universität Darmstadt), Daniel Cohen-Or, David Levin (Tel Aviv University) , As-Rigid-As-Possible Shape Interpolation, ACM SIGGRAPH , pp157-164 , 2000
[21] Marc Alexa, Merging Polyhedral Shapes with Scattered Features , The Visual Computer, Volume 16, 1, pp. 38-46, 2000
[22] P. Cignoni, C. Rocchini and R. Scopigno Metro: measuring error on simplified surfacesComputer Graphics Forum, vol. 17(2), pp 167-174, June 1998
[23] Pierre Alliez, Mark Meyer and Mathieu Desbrun ,Interactive Geometry Remeshing , ACM Transactions on Graphics. Special issue for SIGGRAPH conference , 347-354 , 2002
[24] Shymon Shlafman, Ayellet Tal and Sagi Katz. Metamorphosis of Polyhedral Surfaces using Decomposition, Eurographics 2002 , pp219-228, September 2002.
[25] T.W. Sederberg and E. Greenwood, A physically based approach to 2D shape blending, Proceedings of the 19th annual conference on Computer graphics and interactive techniques pp. 25-34 , 1992
[26] Takashi Michikawa, Takashi Kanai, Masahiro Fujita, Hiroaki Chiyokura: "Multiresolution Interpolation Meshes", Proc. 9th Pacific Graphics International Conference (Pacific Graphics 2001), pp.60-69, October 2001
[27] Tong-Yee Lee, Po-Hua Huang, "Fast and Intuitive Metamorphosis of 3D Polyhedral Models Using SMCC Mesh Merging Scheme," IEEE Transactions on Visualization and Computer Graphics Vol. 9, No. 1, pp 85-98, 2003
[28] X.Gu, S. Gortler, H. Hoppe. Geometry images . ,ACM SIGGRAPH , pp 355 – 361 . 2002
[29] Yuefeng Zhang and Tu Huang, Wavelet shape blending ,The Visual Computer, pp.106-115 , 2000.
[30] 林漢盈 , 三維多面體攤平技術與其應用, 國立成功大學資訊工程研究所碩士論文,撰於2001年7月。