簡易檢索 / 詳目顯示

研究生: 莊宜芳
Zhuang, Yi-Fang
論文名稱: 藉由調控轉譯起始速率影響計畫性核醣體轉譯軌道移轉效率
Regulation of translation initiation rate affects programmed ribosomal frameshifting efficiency
指導教授: 余建泓
Yu, Chien-Hung
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 56
中文關鍵詞: -1計畫性核醣體軌道移轉轉譯起始速率核醣核酸再摺疊偽結髮夾
外文關鍵詞: -1Programmed ribosomal frameshifting, Translation initiation rate, RNA re-folding, Pseudoknot, Hairpin
相關次數: 點閱:102下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • -1計畫性核醣體軌道移轉是非典型蛋白轉譯方式之一,其會利用核醣體往信使核醣核酸5’端滑移一個核苷酸使生物能夠產生超過一種蛋白產物。然而,某些病原性病毒會以此機制精密地調控所需之閱讀框架軌道移轉蛋白與未移轉蛋白比例,而進一步影響繁殖或感染力。因此,大部分研究都著重於-1計畫性核醣體軌道移轉機制中移轉子的原子結構與摺疊穩定性,無論是髮夾或偽結結構,其目的皆為調控-1計畫性核醣體軌道移轉效率。然而,軌道移轉的偽結結構複雜的再次摺疊路徑可能由於多重構形而伴隨轉譯動態去調控-1計畫性核醣體軌道移轉。由此,我利用較常被用來研究的噬菌體MS2外殼蛋白基因轉譯起始髮夾作為控制轉譯動態的方式去探討-1計畫性核醣體軌道移轉受到的影響。其中,穩定的MS2髮夾結構[MS2(GC)]能夠減緩轉譯起始速率,而增加延長中的核醣體間距,這導致其-1計畫性核醣體軌道移轉效率在體外實驗分別約1.4倍與1.1倍高於野生型[MS2(AU)] 及較不穩定的[MS2(UU)];於大腸桿菌實驗中,偽結結構的-1計畫性核醣體軌道移轉效率在MS2(GC)組別相較於MS2(AU)以及MS2(UU)分別為1.1倍與1.6倍。此外,類似現象在哺乳動物細胞也能利用反義寡核苷酸增加起始效率影響-1計畫性核醣體軌道移轉效率,隨著反義寡核苷酸轉染濃度的增加,-1計畫性核醣體軌道移轉效率也隨之下降。以上結果顯示,無論在真核及原核體內或體外系統都能觀察到偽結所誘導的-1計畫性核醣體軌道移轉效率會受轉譯起始速率影響,也許是因為偽結再次摺疊的動態所造成。在生理上,未來我們將以需經由偽結所誘導的-1計畫性核醣體軌道移轉所合成銅離子轉運伴隨蛋白copA(Z)為研究對象。

    The -1 programmed ribosomal frameshifting (-1 PRF) is a non-typical translation process. Through this, a single messenger RNA (mRNA) could encode more than one protein via translating ribosomes shift one nucleotide (nt) to the 5’ end of the message. Some pathogenic viruses use the -1 PRF to precisely regulate the ratio of frameshifted to non-frameshifted protein products for proliferation or infectivity. Thus, most studies focus on understanding the structure and stability of folded frameshiftor structures, either hairpins (HP) or pseudoknots (PK), that aiming to modulate -1 PRF efficiency. However, the complex refolding pathways of frameshifting pseudoknots that result in multi-conformers may couple with translation kinetics to regulate -1 PRF. In this study, I utilized the well-studied bacteriophage MS2 coat protein gene translation initiation hairpin as the model to regulate translation kinetics to investigate its effect on -1 PRF. The stabilized MS2 hairpin [MS2(GC)], which slows down translation initiation rate leading to increased distance between elongating ribosomes, resulted in 1.4-fold and 1.1-fold higher pseudoknot-induced -1 PRF efficiency compared to the wild-type MS2 hairpin [MS2(AU)] or the destabilized MS2(UU) constructs, respectively, in vitro. Additionally, the pseudoknot-induced -1PRF efficiency in the MS2(GC) background is 1.1-fold and 1.6-fold higher than that of MS2(AU) and MS2(UU), respectively, in vivo. The hairpin-induced -1 PRF efficiency is less sensitive to the translation initiation efficiency both in vitro and in vivo. Furthermore, similar regulation was discovered in mammalian cells. By using an antisense oligonucleotide to enhance translation initiation efficiency, the -1 PRF efficiency was reduced along with the increasing of the antisense oligonucleotide concentrations. Together, my current data suggest that pseudoknot-induced -1 PRF efficiency is negatively affected by the translation initiation rate probably through the translation kinetics-coupled pseudoknot refolding efficiency. In the future, we will use E. coli copA as the model to study the physiological relevance of this regulation. The recently discovered copA(Z) copper ion transporter chaperon is synthesized via pseudoknot-induced -1 PRF.

    ENGLISH ABSTRACT…………………………………………………………………...I 中文摘要…..…..….…….….….…….... ….….….….……….…………………………...III ACKNOWLEDGEMENTS…………………………………………………………….IV CONTENTS……………………………………………………………………………...V LISTS OF FIGURES…………………………………………………………………….VI ABBREVIATIONS LIST………………………………………………………………VII INTRODUCTION…………………………………………………………………………1 OBJECTIVE……………………………………………………………………………….5 MATERIALS and METHODS…………………………………………………………...6 RESULTS and FIGURES………………………………………………………………24 CONCLUSION…………………………………………………………………………...49 DISCUSSION…………………………………………………………………………..50 REFERENCES….……………………………………………………………………….51

    1. Giedroc DP. Frameshifting RNA pseudoknots: structure and mechanism. Virus Res. 2009 Feb;139(2):193-208.
    2. Robin Ketteler. On programmed ribosomal frameshifting: the alternative proteomes. Front Genet. 2012; 3: 242.
    3. Korniy N, Samatova E, Peske F, Rodnina MV. Mechanisms and biomedical implications of -1 programmed ribosome frameshifting on viral and bacterial mRNAs. FEBS Lett. 2019 Jul;593(13):1468-1482.
    4. Yanhua Li, Tao Wang. Programmed -2/ -1 Ribosomal Frameshifting in Sim arteriviruses: An Evolutionarily Conserved. J Virol. 2019 Jun 5. pii: JVI.00370-19.
    5. Kurian L. Polyamine sensing by nascent ornithine decarboxylase antizyme stimulates decoding of its mRNA. Nature. 2011 Sep 7;477(7365):490-4.
    6. Martina M. Yordanova. A Nascent Peptide Signal Responsive to Endogenous Levels of Polyamines Acts to Stimulate Regulatory Frameshifting on Antizyme mRNA J Biol Chem. 2015 Jul 17; 290(29): 17863–17878.
    7. Jonathan D. Dinman. Mechanisms and Implications of Programmed Translational Frameshifting.Wiley Interdiscip Rev RNA. 2012 Sep; 3(5): 661–673.
    8. Liao PY. A new kinetic model reveals the synergistic effect of E-, P- and A-sites on +1 ribosomal frameshifting. Nucleic Acids Res. 2008 May;36(8):2619-29.
    9. Farabaugh PJ. Programmed translational frameshifting. Annu Rev Genet. 1996;30:507-28.
    10. Sanghoon Moon, Yanga Byun, Hong-Jin Kim. Predicting genes expressed via −1 and +1 frameshifts. Nucleic Acids Res. 2004; 32(16): 4884–4892.
    11. Yu CH. Exploiting preQ(1) riboswitches to regulate ribosomal frameshifting. ACS Chem Biol. 2013 Apr 19;8(4):733-40.
    12. Chien-Hung Yu, René C. L. Olsthoorn. Stimulation of ribosomal frameshifting by RNA G-quadruplex structures. Nucleic Acids Res. 2014 Feb; 42(3): 1887–1892.
    13. Amy B. Hammell, Stuart W. Peltz, and Jonathan D. Dinman. Identification of Putative Programmed −1 Ribosomal Frameshift Signals in Large DNA Databases. Genome Res. 1999 May; 9(5): 417–427.
    14. Plant EP. The role of programmed-1 ribosomal frameshifting in coronavirus propagation. Front Biosci. 2008 May 1;13:4873-81.
    15. Dinman JD. Ribosomal frameshifting efficiency and gag/gag-pol ratio are critical for yeast M1 double-stranded RNA virus propagation. J Virol. 1992 Jun;66(6):3669-76.
    16. Brierley, 1995 J. Gen. Virol. 76:1885-1892
    17. Baranov PV. Programmed ribosomal frameshifting in decoding the SARS-CoV genome. Virology. 2005 Feb 20;332(2):498-510.
    18. Hao-Teng Hu, Che-Pei Cho, Ya-Hui Lin, and Kung-Yao Chang. A general strategy to inhibiting viral −1 frameshifting based on upstream attenuation duplex formation. Nucleic Acids Res. 2016 Jan 8; 44(1): 256–266.
    19. Melian EB, Du F, Owens N, Nagasaki T, Hall RA, Khromykh AA. Programmed ribosomal frameshift alters expression of west nile virus genes and facilitates virus replication in birds and mosquitoes. PLoS Pathog. 2014 Nov 6;10(11):e1004447.
    20. Ezequiel Balmori Melian, Edward Hinzman,Tomoko Nagasaki, Jason Leung,Anneke Funk, Roy Hall, andAlexander A. Khromykh. NS1′ of Flaviviruses in the Japanese Encephalitis Virus Serogroup Is a Product of Ribosomal Frameshifting and Plays a Role in Viral Neuroinvasiveness. J Virol. 2010 Feb; 84(3): 1641–1647.
    21. Magdeleine Hung, Pratiksha Patel, Susan Davis, and Simon R. GreenImportance of Ribosomal Frameshifting for Human Immunodeficiency Virus Type 1 Particle Assembly and Replication. Virol. 1998 Jun; 72(6): 4819–4824.
    22. Nikolic EI. Modulation of ribosomal frameshifting frequency and its effect on the replication of Rous sarcoma virus. J Virol. 2012 Nov;86(21):11581-94.
    23. Casartelli N. HIV-1 Cell-to-Cell Transmission and Antiviral Strategies: An Overview. Curr Drug Targets. 2016;17(1):65-75.
    24. Eyer L, Růžek D. Nucleoside analogs as a rich source of antiviral agents active against arthropod-borne flaviviruses. Antivir Chem Chemother. 2018 Jan-Dec;26:2040206618761299.
    25. Papatheodoridis GV. Nucleoside analogues for chronic hepatitis B: antiviral efficacy and viral resistance. Am J Gastroenterol. 2002 Jul;97(7):1618-28.
    26. Álvarez M, Mendieta J. Amino acid residues in HIV-2 reverse transcriptase that restrict the development of nucleoside analogue resistance through the excision pathway. J Biol Chem. 2018 Feb 16;293(7):2247-2259.
    27. Jonathan D. Dinman, Maria J. Ruiz-Echevarria, Linker Czaplinski, and Stuart W. Peltz. Peptidyl-transferase inhibitors have antiviral properties by altering programmed −1 ribosomal frameshifting efficiencies: Development of model systems. Proc Natl Acad Sci U S A. 1997 Jun 24; 94(13): 6606–6611.
    28. Wang X1, Xuan Y, Ye K, Gao P. Regulation of HIV-1 Gag-Pol Expression by Shiftless, an Inhibitor of Programmed -1 Ribosomal Frameshifting. Cell. 2019 Jan 24;176(3):625-635.e14.
    29. Jaafar ZA. Viral RNA structure-based strategies to manipulate translation. Nat Rev Microbiol. 2019 Jan;17(2):110-123. doi: 10.1038/s41579-018-0117-x.
    30. Pallan PS. Crystal structure of a luteoviral RNA pseudoknot and model for a minimal ribosomal frameshifting motif. Biochemistry. 2005 Aug 30;44(34):11315-22.
    31. Kim HK. A frameshifting stimulatory stem loop destabilizes the hybrid state and impedes ribosomal translocation. Proc Natl Acad Sci U S A. 2014 Apr 15;111(15):5538-
    32. Harger JW. An "integrated model" of programmed ribosomal frameshifting. Trends Biochem Sci. 2002 Sep;27(9):448-54.
    33. Chien-Hung Yu, Mathieu H. Noteborn, Cornelis W. A. Pleij, and René C. L. Olsthoorn. Stem–loop structures can effectively substitute for an RNA pseudoknot in −1 ribosomal frameshifting. Nucleic Acids Res. 2011 Nov; 39(20): 8952–8959.
    34. Staple DW. Pseudoknots: RNA structures with diverse functions. PLoS Biol. 2005 Jun;3(6):e213. Epub 2005 Jun 14.
    35. Ritchie DB. Programmed -1 frameshifting efficiency correlates with RNA pseudoknot conformational plasticity, not resistance to mechanical unfolding. Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):16167-72.
    36. Yu CH. Stem-loop structures can effectively substitute for an RNA pseudoknot in -1 ribosomal frameshifting. Nucleic Acids Res. 2011 Nov 1;39(20):8952-9.
    37. de Smit MH. Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7668-72.
    38. Zhensheng Zhong, Lixia Yang, Jiahao Shi,1 J. Jeya Vandana,1 Do Thuy Uyen Ha Lam, Gang Chen. Mechanical unfolding kinetics of the SRV-1 gag-pro mRNA pseudoknot: possible implications for −1 ribosomal frameshifting stimulation. Sci Rep. 2016; 6: 39549.
    39. Cho SS. Assembly mechanisms of RNA pseudoknots are determined by the stabilities of constituent secondary structures. Proc Natl Acad Sci U S A. 2009 Oct 13;106(41):17349-54.
    40. Karine Gendron, Johanie Charbonneau, Nikolaus Heveker, Gerardo Ferbeyre, andLéa Brakier-Gingras.Nucleic Acids Res. 2008 Jan; 36(1): 30–40. The presence of the TAR RNA structure alters the programmed -1 ribosomal frameshift efficiency of the human immunodeficiency virus type 1 (HIV-1) by modifying the rate of translation initiation. Nucleic Acids Res. 2008 Jan; 36(1): 30–40.
    41. Bordeleau ME. Functional characterization of IRESes by an inhibitor of the RNA helicase eIF4A.Nat Chem Biol. 2006 Apr;2(4):213-20.
    42. Janice P. Dutcher. Mammalian Target of Rapamycin Inhibition. Vol. 10, 6382s–6387s, September 15, 2004 (Suppl.)
    43. de Smit MH. Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7668-72.
    44. Neuman BW. Antisense morpholino-oligomers directed against the 5' end of the genome inhibit coronavirus proliferation and growth. J Virol. 2004 Jun;78(11):5891-9.
    45. Braasch DA. Antisense inhibition of gene expression in cells by oligonucleotides incorporating locked nucleic acids: effect of mRNA target sequence and chimera design. Nucleic Acids Res. 2002 Dec 1;30(23):5160-7.
    46. Liang XH, Shen W, Sun H, Vickers TA, Crooke ST. Translation efficiency of mRNAs is increased by antisense oligonucleotides targeting upstream open reading frames. Nat Biotechnol. 2016 Aug;34(8):875-80.
    47. Morgan-Kiss RM. Long-term and homogeneous regulation of the Escherichia coli araBAD promoter by use of a lactose transporter of relaxed specificity. Proc Natl Acad Sci U S A. 2002 May 28;99(11):7373-7.
    48. Khlebnikov A. Regulatable arabinose-inducible gene expression system with consistent control in all cells of a culture. J Bacteriol. 2000 Dec;182(24):7029-34.
    49. Tauriainen S. Measurement of firefly luciferase reporter gene activity from cells and lysates using Escherichia coli arsenite and mercury sensors. Anal Biochem. 1999 Aug 1;272(2):191-8.
    50. Benjamin Reeve, Thomas Hargest, Charlie Gilbert, and Tom Ellis. Predicting Translation Initiation Rates for Designing Synthetic Biology. Front Bioeng Biotechnol. 2014; 2: 1.
    51. Meydan S, Klepacki D, Karthikeyan S, Margus T. Programmed Ribosomal Frameshifting Generates a Copper Transporter and a Copper Chaperone from the Same Gene. Mol Cell. 2017 Jan 19;65(2):207-219.
    52. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003 Jul 1;31(13):3406-15.
    53. Proctor JR. COFOLD: an RNA secondary structure prediction method that takes co-transcriptional folding into account. Nucleic Acids Res. 2013 May;41(9):e102.

    無法下載圖示 校內:2024-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE