簡易檢索 / 詳目顯示

研究生: 蘇女衣瑾
Su, I-Chin
論文名稱: 雲端運算服務廠商定價策略之研究
Pricing Strategy of Service Provider in Cloud Computing
指導教授: 耿伯文
Kreng, Victor B.
學位類別: 碩士
Master
系所名稱: 管理學院 - 資訊管理研究所
Institute of Information Management
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 86
中文關鍵詞: 雲端運算網路使用者型態擁塞效果定價策略
外文關鍵詞: Cloud Computing, Consumption of Network User, Congestion Effect, Pricing Strategy
相關次數: 點閱:138下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雲端運算的發展,對於網路服務的商業模式、產業以及國家帶來相當大的衝擊,導致雲端技術與相關服務成為近年來IT產業中熱門的議題,然而在這領域中的相關研究,多屬於技術上的應用,使得廠商在商業與定價上能夠參考的相關研究相當有限。

    因此,為了因應日益受到關注的雲端服務定價議題,本研究以雲端產業中提的服務提供商為探討對象,進行雲端運算服務市場之定價策略的研究與探討。本研究依據現行雲端運算服務市場之商業模式與服務特性,並參考其收費模式與相關服務,來建立雲端服務基礎服務模型及雲端產品模型,以探討在雲端市場上雲端服務商之最適市場定價策略,以及廠商如何在消費者的認知價值與追求利潤極大化之下決定其基礎雲端服務價格與提供加值服務下之產品服務價格。

    本研究根據部分市場與不同產品模型推導下所獲得的均衡結果做性質分析、比較與討論,結果顯示在廠商只有提供基礎服務時,廠商的市場與利潤會受到網路「擁塞效果」以及個人安全風險偏好的影響,而增加消費者對服務的認知價值,將有助於提升廠商利潤水準以及市場需求,然而在消費者對服務認知價值沒有提升的情況之下,若廠商提高價格,則會減少市場對服務的需求。若提供商提供使用者加值服務,則廠商的基礎服務價格相對的降低,且服務市場會相對的增加,除了可以減緩部分使用者對於服務品質上的顧慮外,對於廠商來說,提供額外的加值服務可以增加其利潤,並減緩擁塞效果對廠商利潤的損失。因此,藉由模型的推導可以得知,若雲端服務商能得知雲端服務使用者型態的屬性,並據此來決定雲端服務的價格水準,即可透過價格歧視提昇其利潤水準。

    The development of cloud computing made a great impact on the business model of network service, industries and nations. However, most of cloud researches focus on applications of cloud technique. Consequently, the relevant researches referred in business and pricing strategy are rare. Therefore, This study builds the basic service market model and product market model to discuss how the cloud service provider determine the price of basic cloud computing service and both basic service and value-added service prices under the market with value-add service.

    From the results of static analysis, model comparison and model discussion, this study concludes that the service market, profit of provider will be negatively influenced if user perceived risks of service security and availability if provider only offers basic service. However, the increase of user perceived value will improve the market demand and profit level of provider. Otherwise, if the user perceived value unchanged and provider raises service price will reduce the market demand for service. Furthermore, if provider offers users value-added service to avoid congestion effect or reduce the service availability risk, the cloud market will get more profit than only offer basic service. Otherwise, offering value-added service can help provider slow down the loss of profit affected by congestion effect. Therefore, from this paper we can understand that the cloud provider can use the strategy of market segmentation and price discrimination to increase its profit if service provider can get the information of consumption characters of cloud user.

    摘要 I Abstract II Acknowledgement III List of Tables VI List of Figures VII Chapter 1 Introduction 1 1.1 Research Background and Motivation 1 1.2 Research Scope 4 1.3 Research Objective 4 1.4 Research Procedure 5 Chapter 2 Literature Review 7 2.1 Cloud Computing 7 2.2 The Pricing Strategies 20 2.3 Hotelling Model 34 Chapter 3 The Basic Service Model of Cloud 40 3.1 Research Assumptions 40 3.2 Research Framework 41 3.3 Model Establishment 42 3.4 Equilibrium Result and Analysis (Basic Service Model) 47 Chapter 4 The Product Model of Cloud (Value-added Service) 54 4.1 Research Description 54 4.2 Model Establishment 57 4.3 Equilibrium Result and Analysis (Product Model) 63 4.4 Models Comparison 69 Chapter 5 Conclusions and Suggestion 78 5.1 Conclusions 78 5.2 Suggestion 80 Reference 81

    Anandasivam, A., & Premm, M. (2009). Bid price control and dynamic pricing in Clouds. 17th European Conference on Information Systems, 328-341.
    Andrzejak, A., Kondo, D., & Yi, S. (2010). Decision Model for Cloud Computing under SLA Constraints. 18th Annual IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, 257-266.
    Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., et al. (2009). Above the Clouds: A Berkeley View of Cloud Computing. CA, USA: UC Berkeley Reliable Adaptive Distributed Systems Laboratory.
    Armonk, N. Y., & Shanghai. (2007). IBM Introduces Ready-to-Use Cloud Computing. IBM Press Room. Retrieved November 22, 2010 from http://www-03.ibm.com/press/us/en/pressrelease/22613.wss
    Assael, H. (1990). Marketing Principles & Strategy. Chicago: Dryden Press
    Avlonitis, G. F., & Indounas, K. A. (2005). Pricing objectives and pricing methods in the services sector. Journal of Services Marketing, 19(1), 47-57.
    Beath, J., & Katsoulacos, Y. (1991). The Economic Theory of Product Differentiation. New York, NY: Cambridge University Press.
    Bhargava, H. K., & Sun, D. (2008). Pricing under quality of service uncertainty: Market segmentation via statistical QoS guarantees. European Journal of Operational Research, 191(3), 1189-1204.
    Bitran, G., & Caldentey, R. (2003). An Overview of Pricing Models for Revenue Management. Manufacturing & Service Operations Management, 5(3), 203–229.
    Boss G., Malladi, P. Quan, D. Legregni, L. & Hall, H. (2007). Cloud Computing. IBM Corporation, Technical Report. Retrieved November 22, 2010 from http://download.boulder.ibm.com/ibmdl/pub/software/dw/wes/hipods/Cloud computing wp final 8Oct.pdf
    Botelho, J. (2010). Will Cloud Computing Lead to the Demise of Network Analysis? Virtual Strategy Magazine. Retrieved November 22, 2010 from http://www.virtual-strategy.com/Features/20100608-WildPackets.html
    Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, I. (2009). Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation Computer Systems, 25(6), 599-616.
    Choi, S. Y., Stahl, D. O., & Whinston, A. B. (1997). The Economics of Electronics Commerce. Indianapolis, Indiana: Macmillan Technical Publishing.
    Chung, M.(2009). The Exploratory Research of Profitable Business Model on Cloud Services. R.O.C: Nation Taiwan University of Science and Technology Press
    Church, J., & Ware, R. (2000). Industrial Organization: A Strategic Approach. New York: McGraw-Hill.
    Cloud Computing Server Market Report. (2010). ROC: Science & Technology Policy and Information Center. Retrieved November 22, 2010, from http://cdnet.stpi.org.tw
    Coase, R. H. (1960). The Problem of Social Cost. The Journal of Law and Economics, 3(1), 1.
    Dolgui, A., & Proth, J. M. (2010). Pricing strategies and models. Annual Reviews in Control, 34(1), 101-110.
    Economides, N., & Katsamakas, E. (2005). Two-sided competition of proprietary vs. open source technology platforms and the implications for the software industry. NY: New York University Press.
    Ercan, T. (2010). Effective use of cloud computing in educational institutions. Procedia - Social and Behavioral Sciences, 2(2), 938-942.
    Foster, I. (2002). What is the grid? A three point checklist. GRIDToday, 1(6), 22–25.
    Gayer, A., & Shy, O. (2003). Internet and peer-to-peer distributions in markets for digital products. Economics Letters, 81(2), 197-203.
    Gentzsch, W. (2008). Grids are dead! Or are they ? GRIDToday. Retrieved November 22, 2010 from http:/www.Gridtoday.com/Grid2381106.html.
    Gupta, A., Stahl, D. O., & Whinston, A. B. (1997). A stochastic equilibrium model of internet pricing, Journal of Economic Dynamics & Control, 21, 697-722.
    Harold, H. (1929). stability in competition. The Economic Journal, 39(150), 41-57.
    Huang, P., Peng, H., Lin, P., & Li, X. (2008) Macroeconomics based Grid resource allocation. Future Generation Computer Systems, 24(7), 694-700.
    International Data Corporation (2010). IDC IT Cloud Services Survey. Retrieved November 22, 2010, from http://www.idc.com/
    Lawton, G. (2008). Moving the OS to the web. Computer 41(3), 16–19.
    Kauffman, R. J., & Walden, E. A. (2001). Economics and Electronic Commerce: Survey and Directions for Research. International Journal of Electronic Commerce, 5 (4), 5-116.
    Kimes, S. (1989). Yield management: A tool for capacity-constrained service firms. Journal of Operations Management, 8(4), 348–363.
    Kumar, S., Dutta, K., & Mookerjee, V. (2009). Maximizing business value by optimal assignment of jobs to resources in grid computing. European Journal of Operational Research, 194(3), 856-872.
    Kuo, Y.F., & Yen, S.N. (2009). Towards an understanding of the behavioral intention to use 3G mobile value-added services. Computers in Human Behavior, 25, 103–110
    Lin, M., &Lin, Z. (2006). A cost-effective critical path approach for service priority selections in grid computing economy. Decision Support Systems, 42(3), 1628-1640.
    MacKie-Mason, J. (1997). A Smart Market for Resource Reservation in a Multiple Quality of Service Information Network. Ann Arbor, MI: University of Michigan.
    Misra, S. C., & Mondal, A. (2011). Identification of a company's suitability for the adoption of cloud computing and modelling its corresponding Return on Investment. Mathematical and Computer Modelling, 53(3-4), 504-521.
    National Institute of Standards and Technology (2010). The NIST Definition of Cloud Computing Version 15.Retrieved November 22, 2010 from the World Wide Web: http://csrc.nist.gov/groups/SNS/cloud-computing/
    Noble, P.M., & Gruca, T.S. (1999). Industrial Pricing: Theory and Managerial Practice. Marketing Science, 18(3), 435-454.
    Palma, A. d., & Leruth, L. (1989). Congestion and game in capacity: A duopoly analysis in the presence of network externalities. Annales d’Economie et de Statistique, 15-16, 389-407.
    Parpas, Pand., &Rustem, B. (2008). A pricing mechanism for resource management in grid computing. Computational Economics, 31(4), 381-395.
    Rappa, M. A. (2004). Preparing for utility computing: The role of IT architecture and relationship management. IBM Systems Journal, 43(1), 32-42.
    Rosenberg, D. (2009). IDC: Spending on cloud services to hit 10 percent by 2013. CNET News. Retrieved November 22, 2010 from http://news.cnet.com/8301-13846_3-10372446-62.html#ixzz1602HE9Rp
    Rosenthal, A., Mork, P., Li, M. H., Stanford, J., Koester, D., & Reynolds, P. (2010). Cloud computing: A new business paradigm for biomedical information sharing. Journal of Biomedical Informatics, 43(2), 342-353.
    Roy W. R. (2003). The effects of customer service, branding, and price on the perceived value of local telephone service. Journal of Business Research, 56(3), 201-213.
    Global Cloud Service Market Report. (2010). ROC: Science & Technology Policy and Information Center. Retrieved November 22, 2010 from http://cdnet.stpi.org.tw
    Skillicorn, D.B. (2002). The Case for Datacentric Grids. Proc. Int'l Parallel and Distributed Processing Symp. IEEE CS, 247–251.
    Stober, J., Neumann, D., & Weinhardt, C. (2010). Market-based pricing in grids: On strategic manipulation and computational cost. European Journal of Operational Research, 203(2), 464-475.
    Sultan, N. (2010). Cloud computing for education: A new dawn? International Journal of Information Management, 30(2), 109-116.
    Sweezy, P. M. (1939). Demand Under Conditions of Oligopoly. The Journal of Political Economy, 47(4), 568-573.
    Talluri, K., & Ryzin, G. V. (1998). An Analysis of Bid-Price Controls for Network Revenue Management. Management Science, 44(11), 1577–1593.
    Tellis, G. J. (1986). Beyond the many faces of pricing. J. Marketing
    50, 146-160.
    Tirole, J. (1988). The Theory of industrial Organization. Cambridge, MA: MIT Press.
    Tung, L.L. (2004). Service quality and perceived value's impact on satisfaction, intention and usage of short message service (SMS). Information Systems Frontiers, 6(4).
    Varian, H. R. (2000). Versioning Information Goods. Cambridge, MA: MIT Press.
    Wang, X., & Schulzrinne, H. (2004). Comparative study of two congestion pricing schemes: auction and tâtonnement. Computer Networks, 46(1), 111-131.
    Weatherford, L. & Bodily, S. (1992). A taxonomy and research overview of perishable-asset revenue management: yield management, overbooking, and pricing. Operations Research, 40(5), 831–844.
    Weinhardt, C., Anandasivam, A., Blau, B., Borissov, N., Meinl, T., Michalk, W., et al. (2009). Cloud Computing – A Classification, Business Models, and Research Directions. Business & Information Systems Engineering, 1(5), 391-399.
    Weiss, A. (2007). Computing in the clouds. netWor¬ker, 11(4),16–25.
    Wyld, D. C. (2009). The Utility of Cloud Computing as A New Pricing – and Consumption - Model For Information Technology. International Journal of Database Management Systems, 1(1), 1-20.
    Yuan, D., Yang, Y., Liu, X., & Chen, J. (2010). On-demand minimum cost benchmarking for intermediate dataset storage in scientific cloud workflow systems. Journal of Parallel and Distributed Computing, 17, 316-332.
    Zheng, Q., Tham, C., & Veeravalli, B. (2008) Dynamic Load Balancing and Pricing in Grid Computing with Communication Delay. J. Grid Comput, 239-253.
    Zhang, Z., Tan, Y., & Dey, D. (2009). Price competition with service level guarantee in web services. Decision Support Systems, 47(2), 93-104.

    無法下載圖示 校內:2020-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE