| 研究生: |
蔡宜樺 Tsai, Yi-Hwa |
|---|---|
| 論文名稱: |
功能性材料環狀球殼之靜定問題解析 |
| 指導教授: |
吳致平
Wu, Chih-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 古典殼理論 、功能性材料 、環狀球殼 、三維漸近理論 、微分數值法 |
| 外文關鍵詞: | CST, GDQ, FGMs, 3D asymptotic theory, annular spherical shells |
| 相關次數: | 點閱:85 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文同時運用了廣義微分數值法及漸近展開理論,推導出功能性材料環狀球殼靜定問題之三維漸近解析解,其中之材料性質假設為具等向性、非均質,沿厚度方向呈冪級數變化。藉由代入適當之無因次化參數,利用漸近展開法將各場量變數展開成微小參數之冪級數型式,吾人得以使原先的三維方程式分離成一系列不同階數之微分方程組。再沿著厚度方向,將所得之各階方程式透過連續積分程序,進一步推得由低階至高階完整之遞迴型式的控制方程式。
相應於不同階數的邊界條件,則經由能量原理推衍,導得其合力之型式。且各階的控制方程式與其所對應之邊界條件,將構成一合宜的邊界值問題。為求解此各階相應的邊界值問題,吾人乃採用廣義微分數值法。由於在各階問題之控制方程式中,其微分運算子保持不變,且高階問題中的非齊性項可由低階解求得。因此,首階問題的求解程序可重複應用於高階問題中,經由此逐階循環修正過程,即可得一收斂解。
本文所推衍的功能性材料環狀球殼之三維漸近理論,應用於簡支承受均佈側向載重作用之數值範例,其微分數值解經驗證,不論在收斂性與精確度上均顯示理想之結果。
none
Bellman, R., Casti, J., 1971. Differential quadrature and long-term integration. J. Math. Analy. Appl. 34, 235_238.
Bellman, R., Kashef, B.G., Casti, J., 1972. Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations. J. Comp. Physics. 10, 40-52.
Bert, C.W., Malik, M., 1996. Differential quadrature method in computational mechanics: a review. Appl. Mech. Rev. 49, 1_27.
Bhimaraddi, A., 1993. Three-dimensional elasticity solution for static response of orthotropic doubly curved shallow shells on rectangular planform. Compos. Struct. 24, 67_77.
L. H. Donnell, 1976. Beams, Plates and Shells. New York: McGraw-Hill.
Cheng, Z.Q., Batra, R.C., 2000. Three-dimensional thermoelastic deformations of a functionally graded elliptic plate. Compos. Engrg. Part B. 31, 97_106.
Fan, J., Zhang, J., 1992. Analytical solutions for thick doubly curved laminated shells. J. Engrg. Mech. ASCE 118, 1338_1356.
Huang, N.N., Tauchert, T.R., 1992. Thermal stresses in doubly-curved cross-ply laminates. Int. J. Solids Struct. 29, 991_1000.
Javaheri, R., Eslami, M.R., 2002. Thermal buckling of functionally graded plates based on higher order theory. 25, 603_625.
Kapania, R.K., 1989. A review on the analysis of laminated shells. J. Press. Vessel Tech. 111, 88_96.
Koizumi, M., 1997. FGM activities in Japan. Compos. Engrg. Part B. 28, 1_4.
Noda, N., 1991. Thermal stresses in materials with temperature-dependent properties. Appl. Mech. Rev. 44, 383_397.
Noor, A.K., Burton, W.S., 1990. Assessment of computational models for multilayered composite shells. Appl. Mech. Rev. 43, 67_97.
Pradhan, S.C., Loy, C.T., Lam, K.Y., Reddy, J.N., 2000. Vibration characteristics of functionally graded cylindrical shells under various boundary conditions. Appl. Acoust. 61, 111_129.
Reddy, J.N., 2000. Analysis of functionally graded plates. Int. J. Numer. Methods Engrg. 47, 663_684.
Reddy, J.N., Wang, C.M., Kitipornchai, S., 1999. Axisymmetric bending of functionally graded circular and annular plates. Eur. J. Mech. A/Solids 18, 185_199.
Tanigawa, Y., 1995. Some basic thermoelastic problems for nonhomogeneous structural materials. Appl. Mech. Rev. 48, 377_389.
Washizu, K., 1982. Variational Methods in Elasticity & Plasticity. Pergamon Press, New York.
Wu, C.P., Chiu, S.J., 2001. Thermoelastic buckling of laminated composite conical shells. J. Therm. Stresses 24, 881_901.
Wu, C.P., Chiu, S.J., 2002. Thermally induced dynamic instability of laminated composite conical shells. Int. J. Solids Struct. 39, 3001_3021.
Wu, C.P., Tarn, J.Q., Chi, S.M., 1996. Three-dimensional analysis of doubly curved laminated shells. J. Engrg. Mech. ASCE 122, 391_401.
Wu, C.P., Tarn, J.Q., Chi, S.M., 1996. An asymptotic theory for dynamic response of doubly curved laminated shells. Int. J. Solids Struct. 26, 3813_3841.
Yang, J., Shen, H.S., 2001. Dynamic response of initially stressed functionally graded rectangular thin plates. Comp. Struct. 54, 497_508.
Touloukian, YS., 1967. Thermophysical properties of high temperature solid materials. New York: Macmillian.