| 研究生: |
謝侑釗 Hsieh, Yu-Chao |
|---|---|
| 論文名稱: |
側鏈含三羥甲基與希夫鹼之聚芴高分子的合成、鑑定及其在電洞緩衝層之應用 Polyfluorene with Tris(hydroxymethyl) and Schiff base in Pendant Groups: Synthesis, Characterization and Application as Hole-Buffering Layer |
| 指導教授: |
陳雲
Chen, Yun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 高分子發光二極體 、聚芴高分子電洞緩衝材料 、濕式製程 、希夫鹼 |
| 外文關鍵詞: | PLEDs, polyfluorene, hole-buffering material, solution process, Schiff base. |
| 相關次數: | 點閱:131 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高分子發光二極體(PLEDs)原理是外加一偏壓驅動電洞與電子分別從陽極和陰極注入,遷移至發光層再結合後放出光,所以載子的注入與傳輸對於元件效率有密切關係。然而大部分有機材料,在元件內電洞的移動速率較高於電子,導致發光層中電洞與電子數目不平衡,再結合比率下降,所以欲提高元件效率除了改變材料特性外,降低電洞注入與傳輸速率是有效方法之一。
本研究以Suzuki coupling以及亞胺反應成功合成側鏈含三羥甲基與希夫鹼基團聚芴高分子(PFT),並作為電洞緩衝層(HBL)應用於高分子有機發光二極體。PFT高分子經由核磁共振光譜(1H-NMR)及元素分析(EA)鑑定其結構,並分析其熱性質、光學性質及電化學性質、最後探討膜特性以及元件光電性質。PFT的熱裂解溫度(Thermal Decomposition Temperature, Td)為220oC,有高玻璃轉移溫度(Glass Transition Temperature, Tg)為122 oC;由循環伏安法計算得PFT 的HOMO和LUMO能階分別為-5.59 eV和 -2.71 eV。成功利用濕式製程的旋轉塗佈注膜製備元件 [ITO/PEDOT:PSS/HBL/SY-PPV/LiF/Al],其元件最大亮度為17,292 cd/m2,最大電流效率為6.99 cd/A,優於無加入電洞緩衝材料之元件[ITO/PEDOT:PSS/ SY-PPV/LiF/Al](8,128 cd/m2, 2.32 cd/A)。
由研究結果顯示,以PFT為電洞緩衝層能有效的提高電荷在結合比率,大幅提升元件的發光效率,另外,PFT能夠以濕式製程成膜,元件製程簡單且成本低,綜合以上兩特點PFT作為電洞緩衝材料具有發展潛力。
Balanced carriers’ injection and transport is essential to obtain high emission efficiency in polymer light-emitting diodes (PLEDs). Generally, the injection and transport of holes are faster than electrons, leading to imbalanced carriers in emission layer (EML) and degraded device performance. Reduction of hole injection and transport (hole-buffer) is one of the effective ways to enhance device performance.
In this study, we have synthesized a polyfluorene derivative (PFT) by the Suzuki coupling reaction and imine formation. The PFT is composed polyfluorene main chain and pendant tris(hydroxymethyl) and imine (Schiff base). PFT possesses high glass temperature (Tg > 100 oC) and thermal decomposition temperature (Td,5% was about 220 oC). The HOMO and LUMO energy levels of PFT were -5.59 eV and -2.71 eV, respectively as estimated from onset oxidation and reduction potentials obtained in cyclic voltammetric measurements. Multilayer PLEDs [ITO/PEDOT:PSS/PFT(HBL)/SY-PPV/LiF/Al] have been successfully fabricated using spin-coated PFT as HBL. The maximum luminance and maximum current efficiency were 17,292 cd/m2 and 6.99 cd/A, significantly higher than the device without HBL (8,128 cd/m2, 2.32 cd/A).Our results indicate that PFT is an effective hole-buffer material that can be deposited by spin-coatong process.
1. Pope, M., H.P. Kallmann, and P. Magnante, Electroluminescence in organic crystals. The Journal of Chemical Physics, 1963. 38(8): p. 2042-2043.
2. Tang, C.W. and S.A. VanSlyke, Organic electroluminescent diodes. Applied physics letters, 1987. 51(12): p. 913-915.
3. Burroughes, J., D. Bradley, A. Brown, R. Marks, K. Mackay, R. Friend, P. Burns, and A. Holmes, Light-emitting diodes based on conjugated polymers. nature, 1990. 347(6293): p. 539.
4. 段啟聖, 化工資訊雜誌與商情, 2005. 第26期: p. 40.
5. 郭昭輝, 塑膠資訊雜誌, 2002.
6. Coakley, K.M. and M.D. McGehee, Conjugated polymer photovoltaic cells. Chemistry of materials, 2004. 16(23): p. 4533-4542.
7. Lakowicz, J.R., Principles of Fluorescence Spectroscopy, (1999). 2004, Kluwer Academic/Plenum Publishers, New York.
8. Lax, M., The Franck‐Condon Principle and Its Application to Crystals. The Journal of Chemical Physics, 1952. 20(11): p. 1752-1760.
9. Valeur, B. and M.N. Berberan-Santos, Molecular fluorescence: principles and applications. 2012: John Wiley & Sons.
10. Beck, S., A. Hallam, and A.M. North, EXCIMER AND CHARGE-TRANSFER COMPLEX TRAPPING OF EXCITONS IN CARBAZOLE CONTAINING POLYMERS. Polymer, 1979. 20(10): p. 1177-1179.
11. Yip, W.T. and D.H. Levy, Excimer/exciplex formation in van der Waals dimers of aromatic molecules. Journal of Physical Chemistry, 1996. 100(28): p. 11539-11545.
12. Guillet, J., Polymer photophysics and photochemistry. 1985.
13. Kafafi, Z.H., Organic electroluminescence. 2005: CRC press.
14. May, V. and O. Kühn, Charge and energy transfer dynamics in molecular systems, 2nd. Charge and Energy Transfer Dynamics in Molecular Systems, 2nd, Revised and Enlarged Edition, by Volkhard May, Oliver Kühn, pp. 490. ISBN 3-527-40396-5. Wiley-VCH, February 2004., 2004: p. 490.
15. 陳信宏、陳雲, 中工高雄會刊, 2006. 第3期: p. 72.
16. 葉昆明、陳雲, 科學發展, 2005. 第385期: p. 58.
17. 黃孝文、陳雲, 化工資訊月刊, 2001. 第3期: p. 8.
18. Walzer, K., B. Maennig, M. Pfeiffer, and K. Leo, Highly efficient organic devices based on electrically doped transport layers. Chemical reviews, 2007. 107(4): p. 1233-1271.
19. Baldo, M.A., M.E. Thompson, and S.R. Forrest, High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer. Nature, 2000. 403(6771): p. 750-753.
20. 陳金鑫 and 黃孝文, OLED: 有機電激發光材料與元件. 2005: 五南圖書出版股份有限公司.
21. Wohlgenannt, M., K. Tandon, S. Mazumdar, S. Ramasesha, and Z. Vardeny, Formation cross-sections of singlet and triplet excitons in π-conjugated polymers. Nature, 2001. 409(6819): p. 494-497.
22. Lee, T.W., T. Noh, H.W. Shin, O. Kwon, J.J. Park, B.K. Choi, M.S. Kim, D.W. Shin, and Y.R. Kim, Characteristics of solution‐processed small‐molecule organic films and light‐emitting diodes compared with their vacuum‐deposited counterparts. Advanced Functional Materials, 2009. 19(10): p. 1625-1630.
23. Gao, H., C. Qin, H. Zhang, S. Wu, Z.-M. Su, and Y. Wang, Theoretical characterization of a typical hole/exciton-blocking material bathocuproine and its analogues. The Journal of Physical Chemistry A, 2008. 112(38): p. 9097-9103.
24. Lin, W.-C., H.-W. Lin, E. Mondal, and K.-T. Wong, Efficient solution-processed green and white phosphorescence organic light-emitting diodes based on bipolar host materials. Organic Electronics, 2015. 17: p. 1-8.
25. Adamovich, V.I., S.R. Cordero, P.I. Djurovich, A. Tamayo, M.E. Thompson, B.W. D’Andrade, and S.R. Forrest, New charge-carrier blocking materials for high efficiency OLEDs. Organic electronics, 2003. 4(2): p. 77-87.
26. Wu, C.C., J.C. Sturm, R.A. Register, J. Tian, E.P. Dana, and M.E. Thompson, Efficient organic electroluminescent devices using single-layer doped polymer thin films with bipolar carrier transport abilities. Ieee Transactions on Electron Devices, 1997. 44(8): p. 1269-1281.
27. Malliaras, G.G., J.R. Salem, P.J. Brock, and C. Scott, Electrical characteristics and efficiency of single-layer organic light-emitting diodes. Physical Review B, 1998. 58(20): p. 13411-13414.
28. Segura, J.L., The chemistry of electroluminescent organic materials. Acta Polymerica, 1998. 49(7): p. 319-344.
29. Roncali, J., Conjugated poly (thiophenes): synthesis, functionalization, and applications. Chemical Reviews, 1992. 92(4): p. 711-738.
30. Yang, Y. and A. Heeger, A new architecture for polymer transistors. Nature, 1994. 372(6504): p. 344.
31. Gustafsson, G., Y. Cao, G. Treacy, F. Klavetter, N. Colaneri, and A. Heeger, Flexible light-emitting diodes made from soluble conducting polymers. Nature, 1992. 357(6378): p. 477.
32. Choi, M.-C., Y. Kim, and C.-S. Ha, Polymers for flexible displays: From material selection to device applications. Progress in Polymer Science, 2008. 33(6): p. 581-630.
33. Heeger, A.J., Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel lecture). Angewandte Chemie International Edition, 2001. 40(14): p. 2591-2611.
34. Li, J., J. Liu, C. Gao, J. Zhang, and H. Sun, Influence of MWCNTs doping on the structure and properties of PEDOT: PSS films. International Journal of Photoenergy, 2009. 2009.
35. Martin, E.H. and J. Hirsch, DETERMINATION OF CARRIER MOBILITY IN PLASTICS BY A TIME-OF-FLIGHT METHOD. Solid State Communications, 1969. 7(10): p. 783-+.
36. Babel, A. and S.A. Jenekhe, High electron mobility in ladder polymer field-effect transistors. Journal of the American Chemical Society, 2003. 125(45): p. 13656-13657.
37. Horowitz, G., Organic field-effect transistors. Advanced Materials, 1998. 10(5): p. 365-377.
38. Kepler, R., Charge carrier production and mobility in anthracene crystals. Physical Review, 1960. 119(4): p. 1226.
39. Jenekhe, S.A. and S. Yi, Efficient photovoltaic cells from semiconducting polymer heterojunctions. Applied Physics Letters, 2000. 77(17): p. 2635-2637.
40. Zhang, X. and S.A. Jenekhe, Electroluminescence of multicomponent conjugated polymers. 1. Roles of polymer/polymer interfaces in emission enhancement and voltage-tunable multicolor emission in semiconducting polymer/polymer heterojunctions. Macromolecules, 2000. 33(6): p. 2069-2082.
41. Chen, D., L. Han, W. Chen, Z. Zhang, S. Zhang, B. Yang, Z. Zhang, J. Zhang, and Y. Wang, Bis (2-(benzo [d] thiazol-2-yl)-5-fluorophenolate) beryllium: a high-performance electron transport material for phosphorescent organic light-emitting devices. RSC Advances, 2016. 6(6): p. 5008-5015.
42. Nakayama, K.-I., M. Yokoyama, Y.-J. Pu, and J. Kido, Organic Field-Effect Transistors Using Hetero-Layered Structure with OLED Materials, in Organic Light Emitting Diode-Material, Process and Devices. 2011, InTech.
43. Grozea, D., A. Turak, Y. Yuan, S. Han, Z. Lu, and W. Kim, Enhanced thermal stability in organic light-emitting diodes through nanocomposite buffer layers at the anode/organic interface. Journal of applied physics, 2007. 101(3): p. 033522.
44. Tadayyon, S., H. Grandin, K. Griffiths, P. Norton, H. Aziz, and Z. Popovic, CuPc buffer layer role in OLED performance: a study of the interfacial band energies. Organic Electronics, 2004. 5(4): p. 157-166.
45. Forsythe, E., M. Abkowitz, and Y. Gao, Tuning the carrier injection efficiency for organic light-emitting diodes. The Journal of Physical Chemistry B, 2000. 104(16): p. 3948-3952.
46. Cho, Y.J., K.S. Yook, and J.Y. Lee, A universal host material for high external quantum efficiency close to 25% and long lifetime in green fluorescent and phosphorescent OLEDs. Advanced Materials, 2014. 26(24): p. 4050-4055.
47. Zin, W.M. and W.M. Khairul, Novel conjugated Schiff-Base compounds. 2004, Durham University.
48. Iwan, A., E. Schab-Balcerzak, M. Grucela-Zajac, and L. Skorka, Structural characterization, absorption and photoluminescence study of symmetrical azomethines with long aliphatic chains. Journal of Molecular Structure, 2014. 1058: p. 130-135.
49. Sęk, D., M. Lapkowski, H. Dudek, K. Karoń, H. Janeczek, and B. Jarząbek, Optical and electrochemical properties of three-dimensional conjugated triphenylamine-azomethine molecules. Synthetic Metals, 2012. 162(11-12): p. 1046-1051.
50. Jeevadason, A.W., K.K. Murugavel, and M. Neelakantan, Review on Schiff bases and their metal complexes as organic photovoltaic materials. Renewable and Sustainable Energy Reviews, 2014. 36: p. 220-227.
51. Sek, D., M. Grucela-Zajac, M. Krompiec, H. Janeczek, and E. Schab-Balcerzak, New glass forming triarylamine based azomethines as a hole transport materials: Thermal, optical and electrochemical properties. Optical Materials, 2012. 34(8): p. 1333-1346.
52. Petrus, M., R. Bouwer, U. Lafont, S. Athanasopoulos, N. Greenham, and T. Dingemans, Small-molecule azomethines: organic photovoltaics via Schiff base condensation chemistry. Journal of Materials Chemistry A, 2014. 2(25): p. 9474-9477.
53. Soderberg, T., Organic chemistry with a biological emphasis. 2016.
54. Abu-Dief, A.M. and I.M. Mohamed, A review on versatile applications of transition metal complexes incorporating Schiff bases. Beni-suef university journal of basic and applied sciences, 2015. 4(2): p. 119-133.
55. Nishal, V., D. Singh, A. Kumar, V. Tanwar, I. Singh, R. Srivastava, and P.S. Kadyan, A new zinc–Schiff base complex as an electroluminescent material. Journal of Organic Semiconductors, 2014. 2(1): p. 15-20.
56. Wang, L., S. Jiao, W. Zhang, Y. Liu, and G. Yu, Synthesis, structure, optoelectronic properties of novel zinc Schiff-base complexes. Chinese Science Bulletin, 2013. 58(22): p. 2733-2740.
57. Sánchez, C., J. Bèrnede, L. Cattin, M. Makha, and N. Gatica, Schiff base polymer based on triphenylamine moieties in the main chain. Characterization and studies in solar cells. Thin Solid Films, 2014. 562: p. 495-500.
58. Sek, D., M. Siwy, M. Grucela, G. Małecki, E.M. Nowak, G. Lewinska, J. Santera, K. Laba, M. Lapkowski, and S. Kotowicz, New anthracene-based Schiff bases: Theoretical and experimental investigations of photophysical and electrochemical properties. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017. 175: p. 24-35.
59. Kathirgamanathan, P., S. Surendrakumar, J. Antipan-Lara, S. Ravichandran, Y. Chan, V. Arkley, S. Ganeshamurugan, M. Kumaraverl, G. Paramswara, and A. Partheepan, Novel lithium Schiff-base cluster complexes as electron injectors: synthesis, crystal structure, thin film characterisation and their performance in OLEDs. Journal of Materials Chemistry, 2012. 22(13): p. 6104-6116.
60. Miyaura, N. and A. Suzuki, Stereoselective synthesis of arylated (E)-alkenes by the reaction of alk-1-enylboranes with aryl halides in the presence of palladium catalyst. Journal of the Chemical Society, Chemical Communications, 1979(19): p. 866-867.
61. Valeur, B. and I. Leray, Design principles of fluorescent molecular sensors for cation recognition. Coordination Chemistry Reviews, 2000. 205(1): p. 3-40.
62. Salaneck, W., K. Seki, A. Kahn, and J.-J. Pireaux, Conjugated polymer and molecular interfaces: science and technology for photonic and optoelectronic applications. 2002: Marcel Dekker, New York.
63. 黃英碩, 掃描探針顯微術的原理及應用. 科儀新知, 2005(144): p. 7-17.
64. Zhao, Y.Y., G.Y. Zhang, Z. Liu, C.X. Guo, C.N. Peng, M.S. Pei, and P. Li, Benzimidazo 2,1-a benz de isoquinoline-7-one-12-carboxylic acid based fluorescent sensors for pH and Fe3+. Journal of Photochemistry and Photobiology a-Chemistry, 2016. 314: p. 52-59.
65. Liu, Z.C., Y.X. Li, Y.J. Ding, Z.Y. Yang, B.D. Wang, Y. Li, T.R. Li, W. Luo, W.P. Zhu, J.P. Xie, and C.J. Wang, Water-soluble and highly selective fluorescent sensor from naphthol aldehyde-tris derivate for aluminium ion detection. Sensors and Actuators B-Chemical, 2014. 197: p. 200-205.