| 研究生: |
吳亭潔 Wu, Ting-Chieh |
|---|---|
| 論文名稱: |
醋酸鉀溶液吸收與解吸CO2的行為與反應器因次分析之研究 Studied on CO2 Absorption/ Desorption and Reactors Dimensional Analysis in Potassium Acetate Solution |
| 指導教授: |
陳志勇
Chen, Chuh-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | CO2吸收劑 、碳捕獲 、醋酸鉀 、攪拌氣液反應槽 、微波解吸 、因次分析 、質傳係數 |
| 外文關鍵詞: | CO2 absorbent, carbon capture, potassium acetate, stirred gas-liquid reactor, microwave desorption, dimensional analysis, power number, mass transfer coefficient |
| 相關次數: | 點閱:85 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以20m高濃度醋酸鉀溶液做為二氧化碳(CO2)之吸收/解吸劑,利用底部發泡之高速攪拌氣液反應槽,將進料為15vol%之CO2/ N2混合氣體之吸收效率,從原本傳統填充塔的24%提升到93%。在解吸CO2方面,實驗發現可利用加水至已吸收CO2的醋酸鉀溶液中,進行解吸釋放CO2的程序,在醋酸鉀溶液最佳吸收程度(吸收後溶液pH達8.35以下)下,加入0.6至1.2倍的水量至溶液中可將85-94%的CO2氣體釋放出來。加水解吸後的醋酸溶液,可利用微波進行除水再生程序,當微波功率2,000W、進出料流率45cc/min的條件下,可得高濃度醋酸鉀溶液對每公升CO2的捕獲解吸能耗為1.90×〖10〗^(-4)GJ,能量利用效率高達42.8%。更進一步,若以連續式微波加熱的方式,直接加熱醋酸鉀溶液進行CO2解吸程序,則不但可將加水解吸和微波除水兩步驟簡化為一,更能在相同微波功率下,以進出料流率60cc/min,完成99%的CO2氣體解吸率,且處理每公升CO2所需能量消耗降低至1.43×〖10〗^(-4)GJ,在能耗上較微波除水之再生程序降低了33%。另一方面,本研究透過因次分析,將在高速攪拌氣液反應設備中,對吸收反應速率影響較為重要之參數,如攪拌轉速、葉片直徑、氣體流量、質傳係數及含氣率等,整合歸納成幾個關鍵無因次群,成功擬合 (fitting)出兩條無因次經驗方程式,準確預測本醋酸鉀溶液攪拌吸收CO2系統之power number(Np)和質傳係數(kLa)。透過Np和kLa更全面的了解製程變數和幾何變數交互影響對吸收速率所造成的總體效應,有利於將來做更進一步的反應設備改良,搭配微波加熱解吸的應用,使高濃度醋酸鉀溶液成為一個具商業競爭力之CO2環保吸收劑。
High concentration potassium acetate solution (20m) is used as an absorbent/ desorbent for carbon dioxide (CO2). The use of high-speed sparge stirred gas-liquid reactor with a bottom bubbling enhances absorption efficiency for 15 vol% CO2/N2 mixed gas from 24% to 93%. It is found that adding water into absorbed potassium acetate solution can releasing (desorbing) CO2. The amount of adding water 60-120 wt% can desorbe CO2 from 85-94% in the case that the pH of the solution after absorption is less than 8.35. Microwave can be used on the water removal for potassium acetate regeneration. In addition, another technology of microwave desorption and generation is developed to combine the above two processes and save more than 33% energy consumption. On the other hand, this study also conduct dimensional analysis for high-speed stirred gas-liquid reactor. Several operating parameters are integrated into dimensional groups to predict reaction rate. Two empirical dimensionless equations are successfully fitted to accurately predict the power number (Np) and mass transfer coefficient (kLa) of CO2 absorption system in potassium acetate solution
Through Np and kLa, a more comprehensive understanding of the overall effect on the absorption rate is beneficial to further improvement of the reaction equipment. With the application of microwave desorption and generation, the high concentration potassium acetate solution becomes an environmentally friendly and commercially competitive CO2 absorbent.
1 Idem, R. et al. Practical experience in post-combustion CO2 capture using reactive solvents in large pilot and demonstration plants. International Journal of Greenhouse Gas Control 40, 6-25 (2015).
2 黃啟峰. 二氧化碳與地球暖化. 科學發展, 6-12 (2007).
3 Jadhav, S. G., Vaidya, P. D., Bhanage, B. M. & Joshi, J. B. Catalytic carbon dioxide hydrogenation to methanol: a review of recent studies. Chemical Engineering Research and Design 92, 2557-2567 (2014).
4 Su, X. et al. Catalytic carbon dioxide hydrogenation to methane: A review of recent studies. Journal of energy chemistry 25, 553-565 (2016).
5 Figueroa, J. D., Fout, T., Plasynski, S., McIlvried, H. & Srivastava, R. D. Advances in CO2 capture technology—the US Department of Energy's Carbon Sequestration Program. International journal of greenhouse gas control 2, 9-20 (2008).
6 Oexmann, J., Kather, A., Linnenberg, S. & Liebenthal, U. Post‐combustion CO2 capture: chemical absorption processes in coal‐fired steam power plants. Greenhouse Gases: Science and Technology 2, 80-98 (2012).
7 Metz, B., Davidson, O., de Coninck, H., Loos, M. & Meyer, L. IPCC Special Report on Carbon dioxide Capture and Storage. (2005).
8 Wang, Y., Zhao, L., Otto, A., Robinius, M. & Stolten, D. A Review of Post-combustion CO2 Capture Technologies from Coal-fired Power Plants. Energy Procedia 114, 650-665 (2017).
9 Chen, W.-H., Chen, S.-M. & Hung, C.-I. Carbon dioxide capture by single droplet using Selexol, Rectisol and water as absorbents: A theoretical approach. Applied energy 111, 731-741 (2013).
10 Chen, C. & Rubin, E. S. CO2 control technology effects on IGCC plant performance and cost. Energy Policy 37, 915-924 (2009).
11 Burr, B. & Lyddon, L. in 87th Annual Gas Processors Association Convention, Grapevine, TX, March. 2-5.
12 Al Wahedi, F. & Dadach, Z. Cost Effective Strategies to Reduce CO2 Emissions in the UAE: A Literature Review. Ind Eng Manage 1, 2169-0316.1000116 (2013).
13 Luis, P. Use of monoethanolamine (MEA) for CO2 capture in a global scenario: Consequences and alternatives. Desalination 380, 93-99 (2016).
14 Gao, S. et al. Potassium carbonate slurry-based CO2 capture technology. Energy Fuels 29, 6656-6663 (2015).
15 Aaron, D. & Tsouris, C. Separation of CO2 from flue gas: a review. Sep. Sci. Technol. 40, 321-348 (2005).
16 Grande, C. A., Ribeiro, R. P., Oliveira, E. L. & Rodrigues, A. E. Electric swing adsorption as emerging CO2 capture technique. Energy Procedia 1, 1219-1225 (2009).
17 Wiheeb, A., Helwani, Z., Kim, J. & Othman, M. Pressure swing adsorption technologies for carbon dioxide capture. Separation & Purification Reviews 45, 108-121 (2016).
18 Chaffee, A. L. et al. CO2 capture by adsorption: materials and process development. International journal of greenhouse gas control 1, 11-18 (2007).
19 Sumida, K. et al. Carbon dioxide capture in metal–organic frameworks. Chemical reviews 112, 724-781 (2011).
20 陳航 & 陳郁文. 二氧化碳之補集及再利用技術之應用介紹. 工業污染防治, 117 (2005).
21 Fujioka, Y., Kazama, S. & Yogo, K. Advanced CO2/H2 Separation Materials Incorporating Active Functional Agents. (Research Institute for Innovative Technology for the Earth (RITE), 2012).
22 Ebner, A. D. & Ritter, J. A. State-of-the-art adsorption and membrane separation processes for carbon dioxide production from carbon dioxide emitting industries. Sep. Sci. Technol. 44, 1273-1421 (2009).
23 Belaissaoui, B. & Favre, E. Membrane separation processes for post-combustion carbon dioxide capture: state of the art and critical overview. Oil & Gas Science and Technology–Revue d’IFP Energies nouvelles 69, 1005-1020 (2014).
24 Robeson, L. M. The upper bound revisited. Journal of Membrane Science 320, 390-400 (2008).
25 Roger, B. R. Process for separating acidic gases. (1930).
26 Feron, P. H. Exploring the potential for improvement of the energy performance of coal fired power plants with post-combustion capture of carbon dioxide. International Journal of Greenhouse Gas Control 4, 152-160 (2010).
27 Reynolds, A. J., Verheyen, T. V., Adeloju, S. B., Meuleman, E. & Feron, P. Towards commercial scale postcombustion capture of CO2 with monoethanolamine solvent: key considerations for solvent management and environmental impacts. Environmental science & technology 46, 3643-3654 (2012).
28 Puxty, G. et al. Carbon dioxide postcombustion capture: a novel screening study of the carbon dioxide absorption performance of 76 amines. Environmental science & technology 43, 6427-6433 (2009).
29 Mumford, K. A., Wu, Y., Smith, K. H. & Stevens, G. W. Review of solvent based carbon-dioxide capture technologies. Front. Chem. Sci. Eng. 9, 125-141, doi:10.1007/s11705-015-1514-6 (2015).
30 Jung, J., Jeong, Y. S., Lim, Y., Lee, C. S. & Han, C. Advanced CO2 capture process using MEA scrubbing: Configuration of a split flow and phase separation heat exchanger. Energy Procedia 37, 1778-1784 (2013).
31 Uyanga, I. J. & Idem, R. O. Studies of SO2-and O2-induced degradation of aqueous MEA during CO2 capture from power plant flue gas streams. Ind. Eng. Chem. Res. 46, 2558-2566 (2007).
32 Tatsumi, M. et al. New energy efficient processes and improvements for flue gas CO2 capture. Energy Procedia 4, 1347-1352 (2011).
33 Sun, Z., Liu, Y. D. & Zhong, R. G. Carbon dioxide in the nitrosation of amine: catalyst or inhibitor? The Journal of Physical Chemistry A 115, 7753-7764 (2011).
34 Goldman, M. J., Fine, N. A. & Rochelle, G. T. Kinetics of N-nitrosopiperazine formation from nitrite and piperazine in CO2 capture. Environmental science & technology 47, 3528-3534 (2013).
35 Grant, T., Anderson, C. & Hooper, B. Comparative life cycle assessment of potassium carbonate and monoethanolamine solvents for CO2 capture from post combustion flue gases. International Journal of Greenhouse Gas Control 28, 35-44 (2014).
36 Benson, H. E., Field, J. H. & Jimeson, R. M. CO2 Absorption Employing Hot Potassium Carbonate Solutions. Vol. 50:7 (1954).
37 Buck, B. & Leitch, A. Try gas treating with hot carbonate. Pet. Refin 37, 241-246 (1958).
38 Savage, D. W., Astarita, G. & Joshi, S. CHEMICAL ABSORPTION AND DESORPTION OF CARBON-DIOXIDE FROM HOT CARBONATE SOLUTIONS. Chemical Engineering Science 35, 1513-1522, doi:10.1016/0009-2509(80)80045-5 (1980).
39 龙晓达, 钟国利, 马卫, 胡晓雪 & 周文. Benfield 工艺技术进展. 化肥工业 32, 8-12 (2005).
40 Smith, K. H. et al. Pre-combustion capture of CO2—Results from solvent absorption pilot plant trials using 30wt% potassium carbonate and boric acid promoted potassium carbonate solvent. International Journal of Greenhouse Gas Control 10, 64-73 (2012).
41 Borhani, T. N. G., Azarpour, A., Akbari, V., Wan Alwi, S. R. & Manan, Z. A. CO2 capture with potassium carbonate solutions: A state-of-the-art review. International Journal of Greenhouse Gas Control 41, 142-162 (2015).
42 Smith, K. H. et al. Outcomes from pilot plant trials of precipitating potassium carbonate solvent absorption for CO2 capture from a brown coal fired power station in Australia. Fuel Processing Technology 155, 252-260 (2017).
43 Smith, K. et al. Demonstration of a concentrated potassium carbonate process for CO2 capture. Energy Fuels 28, 299-306 (2013).
44 Anderson, C. et al. Developments in the CO2CRC UNO MK 3 Process: A Multi-component Solvent Process for Large Scale CO2 Capture. Energy Procedia 37, 225-232 (2013).
45 Anderson, C. et al. Recent developments in the UNO MK 3 process–A low cost, environmentally benign precipitating process for CO2 capture. Energy Procedia 63, 1773-1780 (2014).
46 沈健生 & 王振乾. 二氧化碳吸收劑製備及解吸之研究. (2017).
47 Bec, K. B., Futami, Y., Wojcik, M. J., Nakajima, T. & Ozaki, Y. Spectroscopic and Computational Study of Acetic Acid and Its Cyclic Dimer in the Near-Infrared Region. J. Phys. Chem. A 120, 6170-6183, doi:10.1021/acs.jpca.6b04470 (2016).
48 Shim, J.-G., Lee, D. W., Lee, J. H. & Kwak, N.-S. Experimental study on capture of carbon dioxide and production of sodium bicarbonate from sodium hydroxide. Environmental Engineering Research 21, 297-303, doi:10.4491/eer.2016.042 (2016).
49 Mumford, K. A. et al. Post-combustion Capture of CO2: Results from the Solvent Absorption Capture Plant at Hazelwood Power Station Using Potassium Carbonate Solvent. Energy Fuels 26, 138-146, doi:10.1021/ef201192n (2012).
50 Zhu, C., Lu, Y., Fu, T., Ma, Y. & Li, H. Z. Experimental investigation on gas-liquid mass transfer with fast chemical reaction in microchannel. International Journal of Heat and Mass Transfer 114, 83-89 (2017).
51 Knuutila, H., Juliussen, O. & Svendsen, H. F. Kinetics of the reaction of carbon dioxide with aqueous sodium and potassium carbonate solutions. Chemical Engineering Science 65, 6077-6088, doi:10.1016/j.ces.2010.07.018 (2010).
52 Pohorecki, R. & Moniuk, W. KINETICS OF REACTION BETWEEN CARBON-DIOXIDE AND HYDROXYL IONS IN AQUEOUS-ELECTROLYTE SOLUTIONS. Chemical Engineering Science 43, 1677-1684, doi:10.1016/0009-2509(88)85159-5 (1988).
53 Bird, R. B. Transport phenomena. Applied Mechanics Reviews 55, R1-R4 (2002).
54 Zareie-kordshouli, F., Lashani-zadehgan, A. & Darvishi, P. Comparative evaluation of CO2 capture from flue gas by [Emim][Ac] ionic liquid, aqueous potassium carbonate (without activator) and MEA solutions in a packed column. International Journal of Greenhouse Gas Control 52, 305-318 (2016).
55 Cussler, E. L. Diffusion: mass transfer in fluid systems. (Cambridge university press, 2009).
56 Charpentier, J.-C. in Advances in chemical engineering Vol. 11 1-133 (Elsevier, 1981).
57 Rice, R. G. Ozone treatment for industrial wastewater. Pollution technology review (USA). no. 84. (1981).
58 Szücs, E. Similitude and Modelling. (1980).
59 Welty, J., Rorrer, G. L. & Foster, D. G. Fundamentals of Momentum, Heat, and Mass Transfer, Revised 6th Edition. (Wiley, 2014).
60 McCabe, W. L., Smith, J. C. & Harriott, P. Unit Operations of Chemical Engineering. (McGraw-Hill, 2005).
61 Deshmukh, N. A. & Joshi, J. B. Surface Aerators. Chemical Engineering Research and Design 84, 977-992, doi:10.1205/cherd05066 (2006).
62 Nagata, S., Yokoyama, T. & Yanagimoto, M. Memoirs Fac. Eng. Kyoto Univ 18, 444 (1956).
63 Sano, Y. & Usui, H. Interrelations Among Mixing Time, Power Number and Discharge Flow Rate Number in Baffled Mixing Vessels. J. Chem. Eng. Jpn. 18, 47-52, doi:10.1252/jcej.18.47 (1985).
64 Wu, H. An issue on applications of a disk turbine for gas-liquid mass transfer. Chemical Engineering Science 50, 2801-2811, doi:10.1016/0009-2509(95)00122-l (1995).
65 Hsu, Y. C. & Chang, H. C. i. Onset of gas self‐induction and power consumption after gas induction in an agitated tank. Journal of Chemical Technology and Biotechnology 64, 137-148 (1995).
66 林志取. 捲氣式反應器高濃度溶氧質傳及放大之研究, (2001).
67 Alves, S. S., Maia, C. I., Vasconcelos, J. M. T. & Serralheiro, A. J. Bubble size in aerated stirred tanks. Chemical Engineering Journal 89, 109-117, doi:10.1016/s1385-8947(02)00008-6 (2002).
68 Bouaifi, M., Hebrard, G., Bastoul, D. & Roustan, M. A comparative study of gas hold-up, bubble size, interfacial area and mass transfer coefficients in stirred gas-liquid reactors and bubble columns. Chemical Engineering and Processing 40, 97-111, doi:10.1016/s0255-2701(00)00129-x (2001).
69 Akita, K. & Yoshida, F. Gas Holdup and Volumetric Mass Transfer Coefficient in Bubble Columns. Effects of Liquid Properties. Industrial & Engineering Chemistry Process Design and Development 12, 76-80, doi:10.1021/i260045a015 (1973).
70 Moucha, T., Linek, V. & Prokopová, E. Gas hold-up, mixing time and gas–liquid volumetric mass transfer coefficient of various multiple-impeller configurations: Rushton turbine, pitched blade and techmix impeller and their combinations. Chemical Engineering Science 58, 1839-1846, doi:10.1016/s0009-2509(02)00682-6 (2003).
71 Nocentini, M., Fajner, D., Pasquali, G. & Magelli, F. Gas-liquid mass transfer and holdup in vessels stirred with multiple Rushton turbines: water and water-glycerol solutions. Ind. Eng. Chem. Res. 32, 19-26 (1993).
72 Vantriet, K. Review of Measuring Methods and Results in Nonviscous Gas-Liquid Mass Transfer in Stirred Vessels. Industrial & Engineering Chemistry Process Design and Development 18, 357-364, doi:10.1021/i260071a001 (1979).
73 Patil, S. S., Deshmukh, N. A. & Joshi, J. B. Mass-transfer characteristics of surface aerators and gas-inducing impellers. Ind. Eng. Chem. Res. 43, 2765-2774 (2004).
74 Mueller, S. G. Optical measurements in gas-liquid stirred tanks. (Washington University in St. Louis, 2009).
校內:2023-08-17公開