簡易檢索 / 詳目顯示

研究生: 歐純純
Ou, Chun-Chun
論文名稱: 探討化膿性鏈球菌之噬菌體關聯性蛋白SPy0985的特性與核磁共振結構
Characterization and NMR Structure of SPy0985, a Phage-associated Hypothetical Protein from Group A Streptococcus
指導教授: 莊偉哲
Chuang, Woei-Jer
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 104
中文關鍵詞: 噬菌體關聯性蛋白化膿性鏈球菌超抗原
外文關鍵詞: SPy0985, superantigen, Phage-associated Hypothetical Protein
相關次數: 點閱:78下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 化膿性鏈球菌 (Streptococcus pyogenes),俗稱A 群鏈球菌 (簡稱GAS),是人類常見致病菌之一。A 群鏈球菌會導致人類產生許多的疾病,其中包含輕微症狀的咽喉炎、膿皰疹,嚴重的則有猩紅熱、蜂窩性組織炎、毒性休克症候群、壞死性肌膜炎...等。近年來許多 GAS 菌株的基因體已經被定序出來,其中我們所研究的 M1 菌株大約有 2000 多個基因,當中有 33 % 的基因功能是未知的,特別的是這些未知功能的基因,大部分是源自於 Bacteriophage 或 transposon 嵌入菌體所留下的基因。過去的文獻指出,噬菌體感染細菌後,可能會增加細菌體本身的致病力,如增加菌體入侵、附著與生長的能力;抵抗免疫系統或抗生素的攻擊;或是轉譯出來的蛋白具有毒力。而這次我們所研究的主題是要探討一種稱為 SPy0985的噬菌體關聯性的蛋白 (phage-associated hypothetical protein),蛋白由88個胺基酸組成,其中第49至第75的胺基酸序列經由軟體預測分析結果認為具有超抗原的活性(superantigen activity)。目前已利用大腸桿菌 (E. coli BL21) 成功表現SPy0985蛋白並予以純化,平均產率約為 30 mg/L。並且我們找到 SPy0985在 50 mM arginine and glutamate (R+E) buffer 條件下,會有結構的形成以及減少蛋白的聚集物 (aggregation);利用膠體色層分析法確認蛋白的分子量,發現不論在NMR buffer條件或是生理條件的環境中,SPy0985形狀近似二聚體 (dimer);週邊血液單核細胞增生測定 (PBM cell proliferation assay) 顯示其可能具有超抗原的活性。SPy0985的結構以及動力學結果顯示,蛋白的N端以及C端有較高的NOE數值,其C端有形成兩個互相作用的α-helices,並且在N端由F8、Y17、Y23、L31以及Y36等疏水性胺基酸交互堆疊;在G39-D51區域有較低的NOE數值,這表示此區域有flexible loop的形成;有趣的是,在SPy0985的2D 1H-15N HSQC圖譜,發現蛋白N端以及loop區域的胺基酸K3-T46具有兩個訊號(resonances),這表示此區域有結構上的變換 (conformational change);SPy0985在動力學NOE數值為0.58,顯示SPy0985整體較為flexible,其R2/R1數值表示SPy0985在NMR buffer條件下為單聚體 (monomer)。目前的研究結果,我們對於SPy0985蛋白結構以及功能的細節有待進一步的探討。

    Streptococcus pyogenes (group A Streptococcus [GAS]) is one of the most common human bacterial pathogens. GAS causes a variety of human diseases, including pharyngitis, impetigo, scarlet fever, cellulitis, toxic shock syndrome, necrotizing fasciitis. The genomes of many GAS strains have been sequenced, and they contained ~2000 genes. However, the functions of ~33% GAS genes are still unknown. In particular, most of these unknown genes are bacteriophage and transposon genes. It has been known that phage infection can enhance bacterial virulence, including bacterial adhesion, colonization, invasion; resistance to immune defenses; exotoxin production; sensitivity to antibiotics; and transmissibility among humans. In this study we identified a phage-associated hypothetical protein, SPy0985, which contains 88 amino acids residues with a superantigen signature sequence at the position of 49-75. SPy0985 was successfully expressed in E. coli and purified to homogeneity with a yield of 30 mg/L. We also found that of SPy0985 in the presence of 50 mM of arginine and glutamate (R+E) was properly folded with less aggregation. Molecular weight determination by size-exclusion chromatography analysis showed that SPy0985 existed as a shape of dimeric size under R+E and physiological conditions. The result of peripheral blood mononuclear cell assay showed that SPy0985 was a superantigen. NMR analysis showed that SPy0985 exhibited stable structures at N- and C-terminal regions with positive NOE and consisted of two α-helices packed against each other at C-terminus. It also formed a hydrophobic core packed by F8, Y17, Y23, L31 and Y36 at N terminal region. NMR relaxation studied showed that residues G39-D51 exhibited low NOE values, indicating the formation of a flexible loop in this region. Interestingly, the N-terminus and the loop ranging from K3 to T46 exhibited two resonances in 2D 1H-15N HSQC spectrum, indicating a chemical exchange process found from this region. The average NOE value of Spy0985 was 0.58, showing that SPy0985 was highly flexible. The R2/R1 ratio indicated that SPy0985 existed as a monomer. The underlying functional and structural details of SPy0985 remain to be elucidated.

    中文摘要 I 英文摘要 II 致謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 縮寫檢索表 X 儀器 XI 第一章 緒論 1 1-1 化膿性鏈球菌 (Streptococcus pyogenes) 之介紹 1 1-2 噬菌體關聯性蛋白 SPy0985 (Phage-associated hypothetical protein SPy0985 ) 之介紹 4 1-3 核磁共振光譜 (NMR) 在蛋白質三維結構上之應用 5 1-4 論文研究動機及目標 7 第二章 材料與方法 8 2-1 實驗菌株、載體、基因來源與培養基配方 8 2-1-1 菌株 (Host strains and genotypes) 8 2-1-2 載體 (Vector) 8 2-1-3 噬菌體關聯性蛋白SPy0985 基因之來源 8 2-1-4 培養基 (Growth medium) 8 2-2 噬菌體關聯性蛋白 SPy0985 重組蛋白的製備 9 2-2-1 SPy0985 重組蛋白的表現 9 2-2-2 SPy0985 重組蛋白的純化 10 2-2-3 15N, 13C -標定SPy0985 蛋白的製備 12 2-3 SPy0985 重組蛋白之定性分析 13 2-3-1 Tricine SDS-PAGE 分析 13 2-3-2 質譜儀測定SPy0985重組蛋白之分子量 16 2-3-3 溶液種類、溶液濃度以及 pH值之選擇 16 2-3-4 凝膠層析法分析 SPy0985 重組蛋白之寡聚體形成 16 2-4 NMR 蛋白樣品的製備 17 2-5 以 NMR 研究 SPy0985 之三維結構 18 2-5-1 原理 18 2-5-2 NMR 光譜之判定 18 2-5-3 空間限制條件的找尋 20 2-5-4 蛋白分子的三度空間結構之計算 21 2-6 以 NMR 研究 SPy0985 之骨架動態行為 25 2-6-1 15N 弛緩速率的測量 25 2-7 X-光晶體繞射(X-ray crystallography)之 SPy0985 蛋白質晶體製備 26 第三章 實驗結果 27 3-1 噬菌體關聯性蛋白 SPy0985重組蛋白之製備 27 3-1-1 SPy0985 蛋白的製備 27 3-1-2 15N、15N, 13C -標定SPy0985 的製備 27 3-2 SPy0985 重組蛋白之定性分析 28 3-2-1 質譜儀測定SPy0985重組蛋白之分子量 28 3-2-2 凝膠層析法分析SPy0985重組蛋白的形狀近似二聚體 28 3-3 SPy0985之NMR 圖譜分析、胺基酸判定與結構計算 29 3-3-1 SPy0985 重組蛋白之NMR圖譜結構穩定性分析 29 3-3-2 SPy0985 重組蛋白之NMR圖譜循序判定 30 3-3-3 SPy0985 重組蛋白之二級結構定義 31 3-3-4 SPy0985 重組蛋白之三維結構計算 32 3-4 SPy0985 重組蛋白之骨架動力學分析 33 3-4-1 骨架動力學 NOE 分析顯示SPy0985重組蛋白有三個不同NOE數值之區域 33 3-4-2 骨架動力學 R1 與R2 分析結果顯示SPy0985重組蛋白以單聚體方式存在 34 3-5 SPy0985 之蛋白質晶體生長 35 第四章 討論 36 4-1 L-Arginine and L-Glutamate buffer對於蛋白質作用之探討 36 4-2 SPy0985 之結構探討 37 4-3 SPy0985 之NMR動力學結果探討 38 4-4 SPy0985的構形與NMR動力學結果之探討 39 4-5 SPy0985之蛋白質晶體生長探討 40 4-6 如何減少SPy0985之minor conformation形成 40 4-7 SPy0985之超抗原功能探討 41 4-8 SPy0985寡聚體結果比較之探討 41 第五章 結論 42 參考文獻 44 表 50 圖 54 附錄 85 SPy0684補充資料 95 自述 104

    Ahmed, S., and Ayoub, E.M. (1998). Severe, invasive group A streptococcal disease and toxic shock. Pediatr Ann 27, 287-292.

    Arcus, V.L., Proft, T., Sigrell, J.A., Baker, H.M., Fraser, J.D., and Baker, E.N. (2000). Conservation and variation in superantigen structure and activity highlighted by the three-dimensional structures of two new superantigens from Streptococcus pyogenes. J Mol Biol 299, 157-168.

    Aziz, R.K., Ismail, S.A., Park, H.W., and Kotb, M. (2004). Post-proteomic identification of a novel phage-encoded streptodornase, Sda1, in invasive M1T1 Streptococcus pyogenes. Mol Microbiol 54, 184-197.

    Bisno, A.L. (1979). Alternate complement pathway activation by group A streptococci: role of M-protein. Infect Immun 26, 1172-1176.

    Bisno, A.L., Brito, M.O., and Collins, C.M. (2003). Molecular basis of group A streptococcal virulence. Lancet Infect Dis 3, 191-200.

    Bisno, A.L., Rubin, F.A., Cleary, P.P., and Dale, J.B. (2005). Prospects for a group A streptococcal vaccine: rationale, feasibility, and obstacles--report of a National Institute of Allergy and Infectious Diseases workshop. Clin Infect Dis 41, 1150-1156.

    Brunger, A.T. (1992). Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472-475.

    Bruschweiler, R. (2003). New approaches to the dynamic interpretation and prediction of NMR relaxation data from proteins. Curr Opin Struct Biol 13, 175-183.

    Canchaya, C., Proux, C., Fournous, G., Bruttin, A., and Brussow, H. (2003). Prophage genomics. Microbiol Mol Biol Rev 67, 238-276, table of contents.

    Chen, X., Solomon, W.C., Kang, Y., Cerda-Maira, F., Darwin, K.H., and Walters, K.J. (2009). Prokaryotic ubiquitin-like protein pup is intrinsically disordered. J Mol Biol 392, 208-217.
    Cleary, P.P. (2006). Streptococcus moves inward. Nat Med 12, 384-386.

    Courtney, H.S., Hasty, D.L., and Dale, J.B. (2002). Molecular mechanisms of adhesion, colonization, and invasion of group A streptococci. Ann Med 34, 77-87.

    Cunningham, M.W. (2000). Pathogenesis of group A streptococcal infections. Clin Microbiol Rev 13, 470-511.

    Dale, J.B., Washburn, R.G., Marques, M.B., and Wessels, M.R. (1996). Hyaluronate capsule and surface M protein in resistance to opsonization of group A streptococci. Infect Immun 64, 1495-1501.

    Doddapaneni, K., Mahler, B., Pavlovicz, R., Haushalter, A., Yuan, C., and Wu, Z. (2009). Solution structure of RCL, a novel 2'-deoxyribonucleoside 5'-monophosphate N-glycosidase. J Mol Biol 394, 423-434.

    Federle, M.J., McIver, K.S., and Scott, J.R. (1999). A response regulator that represses transcription of several virulence operons in the group A streptococcus. J Bacteriol 181, 3649-3657.

    Ferretti, J.J., McShan, W.M., Ajdic, D., Savic, D.J., Savic, G., Lyon, K., Primeaux, C., Sezate, S., Suvorov, A.N., Kenton, S. (2001). Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc Natl Acad Sci U S A 98, 4658-4663.

    Fraser, J.D., and Proft, T. (2008). The bacterial superantigen and superantigen-like proteins. Immunol Rev 225, 226-243.

    Golovanov, A.P., Hautbergue, G.M., Wilson, S.A., and Lian, L.Y. (2004). A simple method for improving protein solubility and long-term stability. J Am Chem Soc 126, 8933-8939.

    Graham, M.R., Smoot, L.M., Migliaccio, C.A., Virtaneva, K., Sturdevant, D.E., Porcella, S.F., Federle, M.J., Adams, G.J., Scott, J.R., and Musser, J.M. (2002). Virulence control in group A Streptococcus by a two-component gene regulatory system: global expression profiling and in vivo infection modeling. Proc Natl Acad Sci U S A 99, 13855-13860.

    Guijarro, J.I., Pintar, A., Prochnicka-Chalufour, A., Guez, V., Gilquin, B., Bedouelle, H., and Delepierre, M. (2002). Structure and dynamics of the anticodon arm binding domain of Bacillus stearothermophilus Tyrosyl-tRNA synthetase. Structure 10, 311-317.

    Horstmann, R.D., Sievertsen, H.J., Knobloch, J., and Fischetti, V.A. (1988). Antiphagocytic activity of streptococcal M protein: selective binding of complement control protein factor H. Proc Natl Acad Sci U S A 85, 1657-1661.

    Hsueh, P.R., Wu, J.J., Tsai, P.J., Liu, J.W., Chuang, Y.C., and Luh, K.T. (1998). Invasive group A streptococcal disease in Taiwan is not associated with the presence of streptococcal pyrogenic exotoxin genes. Clin Infect Dis 26, 584-589.

    Ji, Y., McLandsborough, L., Kondagunta, A., and Cleary, P.P. (1996). C5a peptidase alters clearance and trafficking of group A streptococci by infected mice. Infect Immun 64, 503-510.

    Johnson, D.R., Stevens, D.L., and Kaplan, E.L. (1992). Epidemiologic analysis of group A streptococcal serotypes associated with severe systemic infections, rheumatic fever, or uncomplicated pharyngitis. J Infect Dis 166, 374-382.

    Kapur, V., Topouzis, S., Majesky, M.W., Li, L.L., Hamrick, M.R., Hamill, R.J., Patti, J.M., and Musser, J.M. (1993). A conserved Streptococcus pyogenes extracellular cysteine protease cleaves human fibronectin and degrades vitronectin. Microb Pathog 15, 327-346.

    Kreikemeyer, B., McIver, K.S., and Podbielski, A. (2003). Virulence factor regulation and regulatory networks in Streptococcus pyogenes and their impact on pathogen-host interactions. Trends Microbiol 11, 224-232.

    Levin, J.C., and Wessels, M.R. (1998). Identification of csrR/csrS, a genetic locus that regulates hyaluronic acid capsule synthesis in group A Streptococcus. Mol Microbiol 30, 209-219.

    Liao, S., Shang, Q., Zhang, X., Zhang, J., Xu, C., and Tu, X. (2009). Pup, a prokaryotic ubiquitin-like protein, is an intrinsically disordered protein. Biochem J 422, 207-215.

    Madden, J.C., Ruiz, N., and Caparon, M. (2001). Cytolysin-mediated translocation (CMT): a functional equivalent of type III secretion in gram-positive bacteria. Cell 104, 143-152.

    Mittermaier, A.K., and Kay, L.E. (2009). Observing biological dynamics at atomic resolution using NMR. Trends Biochem Sci 34, 601-611.

    Mora, M., Bensi, G., Capo, S., Falugi, F., Zingaretti, C., Manetti, A.G., Maggi, T., Taddei, A.R., Grandi, G., and Telford, J.L. (2005). Group A Streptococcus produce pilus-like structures containing protective antigens and Lancefield T antigens. Proc Natl Acad Sci U S A 102, 15641-15646.

    Nakagawa, I., Amano, A., Mizushima, N., Yamamoto, A., Yamaguchi, H., Kamimoto, T., Nara, A., Funao, J., Nakata, M., Tsuda, K. (2004). Autophagy defends cells against invading group A Streptococcus. Science 306, 1037-1040.

    Nizet, V. (2002). Streptococcal beta-hemolysins: genetics and role in disease pathogenesis. Trends Microbiol 10, 575-580.

    Nizet, V. (2007). Understanding how leading bacterial pathogens subvert innate immunity to reveal novel therapeutic targets. J Allergy Clin Immunol 120, 13-22.

    Ohara-Nemoto, Y., Sasaki, M., Kaneko, M., Nemoto, T., and Ota, M. (1994). Cysteine protease activity of streptococcal pyrogenic exotoxin B. Can J Microbiol 40, 930-936.

    Papageorgiou, A.C., and Acharya, K.R. (2000). Microbial superantigens: from structure to function. Trends Microbiol 8, 369-375.

    Perez-Casal, J., Caparon, M.G., and Scott, J.R. (1991). Mry, a trans-acting positive regulator of the M protein gene of Streptococcus pyogenes with similarity to the receptor proteins of two-component regulatory systems. J Bacteriol 173, 2617-2624.

    Pinkney, M., Kapur, V., Smith, J., Weller, U., Palmer, M., Glanville, M., Messner, M., Musser, J.M., Bhakdi, S., and Kehoe, M.A. (1995). Different forms of streptolysin O produced by Streptococcus pyogenes and by Escherichia coli expressing recombinant toxin: cleavage by streptococcal cysteine protease. Infect Immun 63, 2776-2779.

    Pintar, A., Guez, V., Castagne, C., Bedouelle, H., and Delepierre, M. (1999). Secondary structure of the C-terminal domain of the tyrosyl-transfer RNA synthetase from Bacillus stearothermophilus: a novel type of anticodon binding domain? FEBS Lett 446, 81-85.

    Shanley, T.P., Schrier, D., Kapur, V., Kehoe, M., Musser, J.M., and Ward, P.A. (1996). Streptococcal cysteine protease augments lung injury induced by products of group A streptococci. Infect Immun 64, 870-877.

    Sriskandan, S., Faulkner, L., and Hopkins, P. (2007). Streptococcus pyogenes: Insight into the function of the streptococcal superantigens. Int J Biochem Cell Biol 39, 12-19.

    Stevens, D.L. (1992). Invasive group A streptococcus infections. Clin Infect Dis 14, 2-11.

    Stevens, D.L. (1996). Invasive group A streptococcal disease. Infect Agents Dis 5, 157-166.

    Stevens, D.L. (2000). Streptococcal toxic shock syndrome associated with necrotizing fasciitis. Annu Rev Med 51, 271-288.

    Stollerman, G.H. (1988). Changing group A streptococci. The reappearance of streptococcal 'toxic shock'. Arch Intern Med 148, 1268-1270.

    Sun, H., Ringdahl, U., Homeister, J.W., Fay, W.P., Engleberg, N.C., Yang, A.Y., Rozek, L.S., Wang, X., Sjobring, U., and Ginsburg, D. (2004). Plasminogen is a critical host pathogenicity factor for group A streptococcal infection. Science 305, 1283-1286.

    Turner, C., and Sriskandan, S. (2007). Streptococcus pyogenes under pressure. Nat Med 13, 909-910.

    Wagner, P.L., and Waldor, M.K. (2002). Bacteriophage control of bacterial virulence. Infect Immun 70, 3985-3993.

    Wessels, M.R. (1999). Regulation of virulence factor expression in group A streptococcus. Trends Microbiol 7, 428-430.

    Wexler, D.E., Chenoweth, D.E., and Cleary, P.P. (1985). Mechanism of action of the group A streptococcal C5a inactivator. Proc Natl Acad Sci U S A 82, 8144-8148.

    Whittaker, S.B., Boetzel, R., MacDonald, C., Lian, L.Y., Pommer, A.J., Reilly, A., James, R., Kleanthous, C., and Moore, G.R. (1998). NMR detection of slow conformational dynamics in an endonuclease toxin. J Biomol NMR 12, 145-159.

    王志傑 Streptopain 核磁共振之研究:C 端及催化圈環對於與抑制劑結合及蛋白酶活性所扮演的角色 (2006)
    陳俊良 探討化膿性鏈球菌毒力因子 SPE B及SPy0985之核磁共振結構 (2008)

    下載圖示 校內:2020-07-19公開
    校外:2020-07-19公開
    QR CODE