| 研究生: |
謝凱倫 Xie, Kai-Lun |
|---|---|
| 論文名稱: |
利用福衛七號觀測2022年東加火山噴發所引起之大氣波動傳播特性 Observation of atmospheric wave propagation triggered by the 2022 Tonga Volcanic Eruption using FORMOSAT-7/COSMIC-2 |
| 指導教授: |
陳佳宏
Chen, Chia-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 東加火山 、福衛七號 、離子速度儀 、地面氣壓 、小波分析 、海潮計 、帶通濾波器 |
| 外文關鍵詞: | Tonga Volcano, FORMOSAT-7/COSMIC-2 Satellite, Ion Velocity Meter, Ground-level Atmospheric Pressure, Wavelet Analysis, Tidal Gauge, Bandpass Filter |
| 相關次數: | 點閱:86 下載:33 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
西元2022年1月15日當地時間17:14:45 LT東加火山大規模噴發,造成多人死亡及大規模破壞,是30年來最嚴重的一次火山噴發事件。次此的火山噴發能量以多種波動的方式在地球上傳遞,次聲波、Lamb waves、聲波、重力波、海嘯……等,其中造成的大氣波動在24小時內傳遞到全世界。
本研究主要在探討2022年東加火山噴發對不同高度所引起之大氣波動傳播特性,使用福衛七號IVM現地量測電離層電漿資料、福衛七號掩星電漿垂直剖面濃度(ionPrf)、對流層水氣壓垂直剖面(wetPf2)、對流層氣溫垂直剖面(atmPrf)、地面氣壓站和海潮計資料,對其進行觀測和分析。福衛七號IVM觀測結果顯示,東加火山的噴發對衛星高度550公里的電漿濃度產生顯著變化,並且有往西傳播的趨勢。同時,東加火山噴發也對地面氣壓和海潮計的觀測值造成明顯的波動。為了更深入地瞭解東加火山噴發後大氣波動傳播的特性,本研究利用福衛七號電離層掩星反演剖面資料(ionPrf)與大氣層掩星反演資料(atmPrf,wetPf2),嘗試尋找東加火山噴發前後大氣波動向上傳播的證據。接著,進一步利用小波分析法(wavelet)和帶通濾波器(bandpass filter)等濾波方法對資料進行頻譜分析,結果表明這些波動具有明顯的週期變化。根據分析結果,本研究提出了東加火山噴發後大氣波傳播的可能方式,推測火山噴發產生的氣壓擾動主要是以水平方向傳播為主,然後再影響海平面高度變化以及垂直傳遞影響到電離層電漿變化,觀測資料顯示上、下層耦合的證據。這些結果對於深入瞭解東加火山噴發及其對周圍環境的影響具有重要的意義。
On January 15, 2022, a major volcanic eruption occurred in Tonga, resulting in significant casualties and widespread destruction. This study focuses on investigating the propagation characteristics of atmospheric waves generated by the eruption at different altitudes. Using measurements from the FORMOSAT-7/COSMIC-2 satellite, including in-situ ionospheric plasma density and profiles (IVM and ionPrf), water vapor profiles (wetPf2), and atmospheric temperature profiles (atmPrf), together with surface air pressure and tidal gauge data, this study analyzes the effects of the Tonga volcano eruption on the atmosphere. The analysis, including wavelet analysis and bandpass filtering, reveals distinct periodic variations in the observed waves. It is proposed that the air pressure waves generated by the eruption propagated horizontally, induceding an in-situ sea level change, and then propagated vertically to disturb the ionospheric plasma. These results contribute to a better understanding of the 2022 Tonga volcanic eruption and its environmental impacts.
Aa, E., Zhang, S.-R., Erickson, P. J., Vierinen, J., Coster, A. J., Goncharenko, L. P., et al. Significant ionospheric hole and equatorial plasma bubbles after the 2022 Tonga volcano eruption. Space Weather, 20, e2022SW003101, 2022.
Artru, J., Ducic, V., Kanamori, H., Lognonne’, P., and Murakami M. Ionospheric detection of gravity waves induced by tsunamis, Geophys. J. Int., 160, 840–848, 2005.
Carvajal, M., Sepúlveda, I., Gubler, A., & Garreaud, R. Worldwide signature of the 2022 Tonga volcanic tsunami. Geophysical Research Letters, 49, e2022GL098153, 2022.
Chen, C.-H.; Zhang, X.; Sun, Y.-Y.; Wang, F.; Liu, T.-C.; Lin, C.-Y.; Gao, Y.; Lyu, J.; Jin, X.; Zhao, X.; et al. Individual Wave Propagations in Ionosphere and Troposphere Triggered by the Hunga Tonga-Hunga Ha’apai Underwater Volcano Eruption on 15 January 2022. RemoteSens.14, 2179, 2022.
Davies, K. Ionospheric Radio; Peregrinus: London, UK, 1990.
Duncombe, J. The surprising reach of Tonga’s giant atmospheric waves. Eos: AGU Science News, 103, 2022.
Fortes, S., P. Munoz, I. Serrano, and R. Barco, Transform-Based Multiresolution Decomposition for Degradation Detection in Cellular Networks, sensors, 20, 5645, dot:10.3390/s20195645, 2020.
Harding, B. J., Wu, Y.-J. J., Alken, P., Yamazaki, Y., Triplett, C. C., Immel, T. J., et al. Impacts of the January 2022 Tonga volcanic eruption on the ionospheric dynamo: ICON-MIGHTI and Swarm observations of extreme neutral winds and currents. Geophysical Research Letters, 49(9), e2022GL098577, 2022.
Heki, K. Ionospheric signatures of repeated passages of atmospheric waves by the 2022 Jan. 15 Hunga Tonga-Hunga Ha’apai eruption detected by QZSS-TEC observations in Japan. Earth Planets Space 74, 112, 2022.
Kakinami, Y., Kamogawa, M., Tanioka, Y., Watanabe, S., Riadi Gusman, A., Liu, J.-Y., & Mogi, T. Tsunamigenic ionospheric hole. Geophysical Research Letters, 39(13), L00G27, 2012.
Kamogawa, M., Kanaya, T., Orihara, Y., Toyoda, A., Suzuki, Y., Togo, S., & Liu, J.-Y. Does an ionospheric hole appear after an inland earthquake? Journal of Geophysical Research: Space Physics, 120(11), 9998–10, 2015.
Khan, A. and S. Jin. Gravity wave activities in Tibet observed by COSMIC GPS radio occultation, Geodesy and Geodynamics, 9, 504-511, 2018.
Kubota, T., Saito, T., Nishida, K. Global fast-traveling tsunamis driven by atmospheric Lamb waves on the 2022 Tonga eruption. Science, Vol.377,Issue 6601, 91-94, 2022.
Liu, J. Y., Tsai, H. F., Lin, C. H., Kamogawa, M., Chen, Y. I., Lin, C. H., Huang, B. S., Yu, S. B., and Yeh, Y. H. Coseismic ionospheric disturbances triggered by the Chi‐Chi earthquake, J. Geophys. Res., 115, A08303, 2010.
Liu, J.-Y.; Chen, C.-Y.; Sun, Y.-Y.; Lee, I.-T.; Chum, J. Fluctuations on vertical profiles of the ionospheric electron density perturbed by the 11 March, 2011 M9.0 Tohoku earthquake and tsunami. GPS Solut. 23, 76, 2019.
Nishikawa, Y., Yamamoto, M.-Y., Nakajima, K., Hamama, I., Saito, H., Kakinami, Y., Yamada, M., Ho, T.-C. Observation and simulation of atmospheric gravity waves exciting subsequent tsunami along the coastline of Japan after Tonga explosion event. Scientific Reports. 12, 22354, 2022.
Omira, R., Ramalho, R.S., Kim, J. et al. Global Tonga tsunami explained by a fast-moving atmospheric source. Nature 609, 734–740, 2022.
Rowberry, M., Gunn, J. Atmospheric pressure anomalies at the British Cave Science Centre triggered by catastrophic volcanic eruption in Tonga on 15 January 2022. Cave and Karst Science, Vol.49, No.1, 14–18, 2022.
Shinagawa, H., Tsugawa, T., Matsumura, M., Iyemori, T., Saito, A., Maruyama, T., et al. Two-dimensional simulation of ionospheric variations in the vicinity of the epicenter of the Tohoku-Oki earthquake on 11 March 2011. Geophysical Research Letters, 40(19), 5009–5013, 2013.
Sun, Y.-Y.; Chen, C.-H.; Lin, C.-Y. Detection of Vertical Changes in the Ionospheric Electron Density Structures by the Radio Occultation Technique Onboard the FORMOSAT-7/COSMIC2 Mission over the Eruption of the Tonga Underwater Volcano on 15 January 2022. Remote Sens. 14, 4266, 2022.
Sun, Y.-Y. GNSS brings us back on the ground from ionosphere. Geosci. Lett. 6, 14, 2019.
U.S. Geological Survey. M 5.8 volcanic eruption - 68 km NNW of Nuku‘alofa. 2022.
Wang, J.; Sun, Y.-Y.; Yu, T.; Wang, Y.; Mao, T.; Yang, H.; Xia, C.; Yan, X.; Yang, N.; Huang, G.; et al. Convergence effects on the ionosphere during and after the annular solar eclipse on 21 June 2020. J. Geophys. Res.-Space Phys. 127, e2022JA030471, 2022.
Xu, J.; Li, D.; Bai, Z.; Tao, M.; Bian, J. Large Amounts of Water Vapor Were Injected into the Stratosphere by the Hunga Tonga– Hunga Ha’apai Volcano Eruption. Atmosphere, 13, 912, 2022.
Zettergren, M. D., Snively, J. B., Komjathy, A., & Verkhoglyadova, O. P. Nonlinear ionospheric responses to large-amplitude infrasonic-acoustic waves generated by undersea earthquakes. Journal of Geophysical Research: Space Physics, 122(2), 2272–2291, 2017.
吳祚任.東加海嘯為何那樣?物理專文 - 新聞訊息, 2022.