簡易檢索 / 詳目顯示

研究生: 賴添傳
Lai, Tan-Tung
論文名稱: 雙跨距具加強環之圓柱薄殼之振動分析
Vibration Analysis of Ring-Stiffened Thin Cylindrical Shells
指導教授: 王榮泰
Wang, Rong-Tyai
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 120
中文關鍵詞: 雙跨距
外文關鍵詞: thin
相關次數: 點閱:28下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要是使用模態分析法,且考慮剪切變形效應與轉動慣量效應之圓柱薄殼振動分析。主要是利用不同的幾何參數,例如:長度、厚度、半徑等等之因素探討對模態頻率變化的趨勢為何。
    本文首先為建立單一跨距圓柱薄殼結構之應力場、應變場與位移場之關係,從而推導圓柱薄殼結構的運動方程式,而後再利用轉換矩陣來計算分析出圓柱薄殼結構自由振動之模態頻率與相對應之模態形狀函數,最後再探討幾何參數對結構物的模態頻率之影響。
    此外又對雙跨距圓柱薄殼作自由振動分析,即討論具有外加強環之雙跨距圓柱薄殼結構,及具內加強環之雙跨距圓柱薄殼結構,來分析雙跨距圓柱薄殼下的加強環之寬度效應、加強環之厚度效應、及雙跨距圓柱薄殼結構之長度效應。且比較單一跨距圓柱薄殼結構、外加強環之雙跨距圓柱薄殼結構、內加強環之雙跨距圓柱薄殼結構三者之間的關係

    摘要............................................I 誌謝...........................................II 目錄..........................................III 表目錄..........................................V 圖目錄.........................................IX 符號說明......................................XIV 第一章 緒論.................................... 1 §1-1 前言......................................1 §1-2 文獻回顧 .................................2 §1-3 研究範圍 .................................5 第二章 單跨距圓柱薄殼之自由振動分析.............8 §2-1 變形與運動方程式..........................8 §2-2 圓柱薄殼之自由振動.......................12 §2-3 模態頻率與模態形狀函數之計算.............19 §2-4 實例說明與討論...........................20 第三章 雙跨距圓柱薄殼具外加強環之自由振動分析..34 §3-1 變形與運動方程式.........................34 §3-2 圓柱薄殼之自由振動.......................42 §3-3 模態頻率與模態形狀函數之計算.............53 §3-4 實例說明與討論...........................55 第四章 雙跨距圓柱薄殼具內加強環之自由振動分析..70 §4-1 變形與運動方程式.........................70 §4-2 圓柱薄殼之自由振動.......................78 §4-3 模態頻率與模態形狀函數之計算.............89 §4-4 實例說明與討論...........................91 第五章 總結與建議 ............................106 §5-1 總結....................................106 §5-2 建議....................................107 參考文獻......................................109 附錄A ........................................114 附錄B ........................................118 附錄C ........................................119 附錄D ........................................120

    [1] E. E. Sechler, The historical development of shell research and design, Thin-shell Structures, Theory, Experiment and Design, Englewood Cliffs, New Jersey : Prentice-Hall, 1974.
    [2] V. Z. Vlasov, Thin-walled Elastic Beams, 2nd edn., National Science Foundation, Washington, D. C., U.S.A., 1961.
    [3] R. N. Arnold and G. B. Warburton, Flexural vibrations of the shells of thin cylindrical shells having freely supported ends, Proceedings of the Royal Society of London Series A 197, pp.238-256, 1949.
    [4] R. N. Arnold and G. B. Warburton , The flexural vibrations of thin cylinders, Proceedings of the Institution of Aechanical Engineers Series A 167, pp.62-74, 1953.
    [5] G. B. Warburton, “ Vibration of thin cylindrical shells ”, Journal of Mechanical Engineering Science 7, pp.399-407, 1965.
    [6] S. Timoshenko, Theory of plates and shells, New York : McGraw -Hill, 1940.
    [7] W. Flügge, Statik und Dynamik der Schalen, Berlin : Springer -Verlag, 1962.
    [8] L. H. Donnell, A discussion of thin shell theory, Proceedings of the 5th International Congress of Applied Mechanics, pp.66-70, 1938.
    [9] K. Forsberg, “ Influence of boundary conditions on the modal characteristics of thin shells ”, AIAA Journal,Vol.2,No.12, pp.2150-2157, 1964.
    [10] K. Forsberg, A review of analytical methods used to determine the modal characteristics of cylindrical shells, Lockheed Missile and Space Company Technical Report No. 6-75-65-25, 1965.
    [11] C. L. Dym, “ Some new results for the vibrations of circular cylinders ”, Journal of Sound and Vibration,Vol.29,No.2, pp.189-205, 1973.
    [12] J. L. Sanders, JR., An improved first approximation theory of thin shells, NASA Technical Report R-24, 1959.
    [13] A. W. Beissa, Vibration of shells (NASA SP-288), Washington, D.C.:U.S. Government Printing Office, 1973.
    [14] C. Ho, Vibrations of circular cylindrical shells, Argonne National Laboratory Report CT-76-9, 1976.
    [15] S. Markuš, The Mechanics of Vibrations of Cylindrical shells, Amsterdam : Elsevier, 1988.
    [16] C. B. Sharma and D. J. Johns, “ Free vibration of cantilever circular cylindrical shells – a comparative study. ”, Journal of Sound and Vibration,Vol.25,No.3, pp.433-449, 1972.
    [17] C. B. Sharma, “ Calculation of natural frequencies of fixed-free circular cylindrical shells. ”, Journal of Sound and Vibration,Vol.35,No.1, pp.55-76, 1974.
    [18] K. Forsberg, “ Influence of boundary conditions on the madal characteristics of thin cylindrical shells. ” American Institute of Aeronautics and Astronautics Journal,Vol.2,No.12, pp.2150-2157, 1964.
    [19] K. Forsberg, “ Axisymmetric and beam-type vibration of thin cylindrical shells. ”, AIAA Journal,Vol.7,No.2, pp.221-227, 1969.
    [20] K. Forsberg, “ A review of analytical methods used to determine the modal characteristics of cylindrical shells. ”, NASA CR-613, 1965.
    [21] G. B. Warburton and J. Higgs, “ Natural frequencies of thin cantilever cylindrical shells. ”, Journal of Sound and Vibration,Vol.11,No.3, pp.335-338, 1970.
    [22] R. L. Goldman, “ Mode shape and frequencies of clamped -clamped cylindrical shells. ”, American Institute of Aeronautics and Astronautics Journal,Vol.12,No.12, pp.1755-1756, 1974.
    [23] H. Chung, A general method of solution for vibrations of cylindrical shells, Ph. D. Thesis, Tufts University, 1974.
    [24] R. Greif and H. Chung, “ Vibrations of constrained cylindrical shells. ”, American Institute of Aeronautics and Astronautics Journal,Vol.13,No.9, pp.1190-1198, 1975.
    [25] Gallety, G. D., “ On the In-Vacuo Vibrations of Simply Supported, Ring Stiffened Cylindrical Shells ”, Proceedings of the 2nd U. S. National Congress of Applied Mechanics, pp.225-231, 1955.
    [26] Hu, W. C. L., and Wah, T., “ Vibrations of Ring Stiffened Cylindrical Shells-An ‘Exact’ Method ”, Southwest Research Institute Technical Report, Oct, 1996.
    [27] Weinggarten, V. I., “ Free Vibrations of Ring-Stiffened Conical Shells ”, AIAA Journal, Vol.3, No. 8, pp.1475-1481, 1965.
    [28] Mikulas, M. M., Jr., and McElman, J. A., “ On Free Vibrations of Eccentrically Stiffened Cylindrical Shells and Flat Plates ”, NASA TN-D-3010, 1965.
    [29] Blocka, B. “ Free vibrations of thin, elastic orthogonally stiffened shells of revolution with stiffeners treated as discrete elements ”, Rozprawy Inzynierskie, 37, pp.65-85, 1989
    [30] A. M. J. Al-Majafi and G. B. Warburton, “ Free vibration of ring-stiffened cylindrical shells ” , Journal of Sound and Vibration, Vol.13,No.1, pp.9-25, 1970.
    [31] Bardell, N. S., and Mead, D. J., “ Free vibration of an orthogonally stiffened cylindrical shell. Part II : discrete general stiffeners ”, Journal of Sound and Vibration,Vol.134,No.1, pp.55-72, 1989.
    [32] Jiang, J., and Olson, M. D. “ Vibration analysis of orthogonally stiffened cylindrical shell using super finite elements ”, Journal of Sound and Vibration,Vol.113,No.2, pp.317-327, 1987.
    [33] Chung, H., “ Free vibration analysis of circular cylindrical shells ”, Journal of Sound and Vibration,Vol.74,No.3, pp.331-350, 1981.
    [34] H. H. Bleich, “ Approximate determination of the frequencies of ring stiffened cylindrical shells ”, Österreichisches Ingenieur -Archiv 15, pp.1-4, 1961.
    [35] T. Wah and W. C. L. Hu, “ Vibration analysis of stiffened cylinders including inter-ring motion.”, Journal of the Acoustical Society of America,Vol.43,No.5, pp.1005-1016, 1968.
    [36] T. Wah and L. R. Calcote, Structure Analysis by Finite Difference Calculus, New York : Van Nostrand Reinhold Co, 1970.
    [37] I. D. Wilken and W. Soedel, “ The receptance method applied to ring-stiffened cylindrical shells :analysis of modal characteristics.” Journal of Sound and Vibration,Vol.44,No.4, pp.563-576, 1976.
    [38] I. D. Wilken and W. Soedel, “ Simplified prediction of modal characteristics of ring-stiffened cylindrical shells. ”, Journal of Sound and Vibration 44,Vol.44,NO.4, pp.577-589, 1976.
    [39] K. Forsberg, “Exact solution for natural frequencies of a ring-stiffened cylinders”, AIAA/ASME 10th Structures, Structural Dynamics and Materials Conference, ASME Volume on Structures and Materials, pp.18-30, 1969.
    [40] 蕭德慶,“雙跨距圓柱薄殼之振動分析”,成功大學工程科學研究所碩士論文,1992.
    [41] 吳克遜,“多跨距圓柱薄殼之振動分析”,成功大學工程科學研究所碩士論文,1992.

    下載圖示 校內:立即公開
    校外:2003-08-28公開
    QR CODE