簡易檢索 / 詳目顯示

研究生: 莊誌銘
Chuang, Chih-Ming
論文名稱: 碳材料表面修飾於超級電容器電極之應用
Surface modification of carbonaceous materials for use in supercapacitor electrodes
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 138
中文關鍵詞: 超級電容器中孔碳活性碳纖維布奈米碳纖維奈米碳管水熱沉積法
外文關鍵詞: super capacitor, mesoporous carbon (MPC), activated carbon cloth (ACC), carbon nanofibers (CNFs), carbon nanotubes (CNTs), hydrothermal deposition
相關次數: 點閱:124下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要對超級電容器之碳電極材料進行改質,以提升其高速操作的效能。首先於中孔碳(mesoporous carbon, MPC)表面成長奈米碳纖維(carbon nanofibers, CNFs),成長CNFs所使用之Fe觸媒以熱迴流法擔載至MPC上,以H2氣氛還原Fe催化劑後分別於800、900℃下成長CNFs;CNFs的存在,促進了MPC間的良好電性接觸,可使MPC之電阻減少32.6 %。但是,於CNFs成長過程中,Fe容易與MPC反應生成Fe3C,導致MPC的孔洞阻塞,而使得成長CNFs後的MPC比電容下降。為了改善以上的缺點,碳電極材料改用活性碳纖維布(activated carbon cloth, ACC),以濺鍍法將Ni鍍於ACC表面作為成長奈米碳管之(carbon nanotubes, CNTs)觸媒,利用濺鍍法,僅將催化劑鍍於ACC表面,因此成長CNTs後,CNT/ACC系列樣品避免了孔洞阻塞皆保有ACC原始之比表面積。再則於成長CNTs程序中通入5% NH3,不但增進了CNTs的品質,也保留了ACC表面的含氧官能基團;由於CNTs使得活性碳纖維間有良好的電性接觸,CNT/ACC樣品在高掃描速率之循環伏安測試之比電容維持率優於ACC,在500 mV/s下,CNT/ACC之效能最高可提升達239 %。
    擬電容電極材料之效能改善部份,有別於一般擔載奈米顆粒於碳材表面的方式,本研究開發出水熱沉積法來擔載RuO2及Ni奈米顆粒;於水熱過程中,CNFs表面會受到輕微氧化而在其表面產生孔洞,這些孔洞便成為奈米顆粒之成核點,經由水熱程序,奈米顆粒尺寸均一(~2 nm)且均衡的散佈於CNFs表面。將所獲得之RuO2/CNF電極材料進行電化學測試,RuO2因擔載於導電性優異之CNFs表面,CNFs的存在不但降低了整體材料的電阻也提供了良好的電子傳輸網路;使得RuO2/CNF之效能增加,於200 mV/s下,效能較純RuO2奈米顆粒提升638%,其比電容達155 F/g。同時,RuO2/CNF也具有長程高速操作的穩定性,經掃描速率500 mV/s掃描1000圈後,電容維持率達98.9 %。於Ni/CNF電極材料的研究中,同樣確認水熱程序有利於擔載奈米粒子於碳材表面,但由於Ni前驅物在水熱反應後是生成Ni(OH)2,其尺寸過大(200~400 nm),將限制Ni化合物所能提供進行氧化還原反應之表面。因此將水熱後之產物進行H2還原,所得即Ni/CNF樣品,Ni奈米顆粒尺寸均一且均衡的散佈於CNFs表面;於電化學測試中,Ni/CNF之比電容值於200 mV/s下,仍高於CNF電極;當Ni於鹼性電解質中表面形成Ni(OH)2,不但提供擬電容同時也增進CNFs的親水性,有利電雙層形成。相同地,Ni/CNF電容器也能穩定的長程高速操作,經掃描速率500 mV/s掃描1000圈後,電容維持率達96.6 %。於交流阻抗分析中,Ni/CNF系列電容器之阻抗小於CNF電容器,Ni存在使得電阻下降,且改善CNF對於電荷的親和力。

    In this research, carbonaceous materials are modified in order to be high performance electrode materials in super capacitor. Carbon nanofibers (CNFs) were grown on catalyst-seeded mesoporous carbons using thermal chemical vapor deposition. The iron catalyst was applied to the mesoporous carbons (MPC) by a reflux process followed by a high temperature reduction. The growth of CNFs then took place through the thermal decomposition of methane at temperatures of 800 °C or 900 °C. CNFs grown on MPC provide interconnects among the particles. Intimate contacts between the CNFs and the MPC were also observed. Due to these interconnects and the intimate contacts, the electrical resistance MPC having CNFs is approximately 32.6% lower than that of MPC. In spite of electrical resistance reducing by CNFs existing, but the specific capacitance of CNF-grafted MPC is decreased due to pore blockage by Fe3C. These Fe3C particles were formed under CNFs growth stage. In order to improve above disadvantages, activated carbon cloth (ACC) was used as electrode material. The catalyst used for the growth of CNTs was sputter-deposited Ni. It was found that the use of sputter-deposited catalyst for the growth CNTs prevents normally observed surface pore blockage on the ACC. The growth of CNTs also took place in a thermal chemical vapor deposition chamber. During the CNT growth, ammonia was introduced into the growth chamber for enhancing the CNT growth and limiting the formation of pyrolytic carbon. The resulting CNTs were found to follows the tip growth mode, leading to direct contacts between the CNTs and the ACC fiber surfaces. Due to this and the high electrical conductivity of CNTs, the obtained CNT-grafted ACC electrodes exhibit significantly enhanced electrical conductivity and improved capacitance retention. The enhancement of capacitance is as high as 239% at a potential sweep of 500 mV/s.
    The performances of electrode materials (RuO2 and Ni nanoparticles) in pseudo capacitor were also improved by loading onto CNF surface using a hydrothermal deposition method. The obtained RuO2 nanoparticles have very small particle sizes, averaging at 2 nm with a narrow size distribution, and are homogenously distributed on the CNF surfaces. Electrochemical capacitors were fabricated using RuO2 grafted CNFs as the electrodes. The existence of CNFs leads to reduced contact resistance among the RuO2 nanoparticles and therefore provides a network for fast electron transport, which then results in enhanced electrochemical performance. The enhancement was found to be proportional to the RuO2 content and can be as high as 638% at a high sweep rate of 200 mV/s, at which a capacitance of 155 F/g was obtained. Stability of the RuO2-grafted CNF capacitor has also been demonstrated by subjecting the capacitor to a potential sweep at 500 mV/s for 1000 cycles. The Ni nanoparticles also have a narrow size distribution and are well dispersed the CNF surfaces. The electrochemical capacitance was enhanced due to the presence of the Ni nanoparticles. This is attributed to the occurrence of pseudocapacitance effect, enhanced electric double layer capacitance, and increased electrical conductivity. The enhancement was found to be proportional to the Ni content and can be as high as 214%. Stability of the Ni grafted CNF capacitor has been demonstrated by subjecting the capacitor to a potential sweep at 500mV/s for 1000 cycles.

    總目錄 摘要…………………………………………………………………...................Ⅰ Abastract………………………………………………………………………... Ⅲ 誌謝……………………………………………………………………………...Ⅴ 總目錄…………………………………………………………………………...Ⅵ 表目錄…………………………………………………………………………...VI 圖目錄…………………………………………………………………………...X 第一章 緒論…………………………………………………………………….1 1-1 超級電容器簡介…………………………………………………… 1 1-2 超級電容器應用及發展……………………………………………... 3 1-3 研究動機…………………………………………………………… 4 第二章 理論與文獻回顧……………………………………………………… 6 2-1 超級電容器原理…………………………………………………… 6 2-1-1電雙層電容器……………………………………………… 6 2-1-2擬電容器…………………………………………………… 7 2-2 電極材料…………………………………………………………… 8 2-2-1電雙層電容器電極材料…………………………………….8 2-2-2 擬電容器電極材料……………………………………….15 2-2-3 電極材料特性分析……………………………………...18 2-3 電容器構造…………………………………………………………27 2-3-1 電容器串聯……………………………………………….27 2-3-2 電容器並聯……………………………………………...29 2-3-3 平行板電容器…………………………………………….29 2-3-4 二極及三極式電容器…………………………………….32 2-4 電化學測試方法……………………………………………………... 34 2-4-1 循環伏安法…………………………………………………34 2-4-2 定電流充放電………………………………………………36 2-4-3 交流阻抗理論………………………………………………38 第三章 實驗設計……………………………………………………………… 47 3-1 概述………………………………………………………………… 47 3-2 成長CNFs或CNTs於孔洞性碳電極材料………………………… 48 3-2-1 MPC表面成長CNFs…………………………………………………………………………48 3-2-2 活性碳纖維布(ACC)表面成長CNTs……………………………………50 3-3 利用水熱沉積法擔載電化學活性奈米顆粒於CNF表面………… 52 3-3-1 水熱法擔載RuO2於CNF表面……………………………….53 3-3-2 水熱法擔載Ni於CNF表面………………………………….54 3-4 材料特性分析………………………………………………………..55 3-4-1 氮氣物理吸脫附分析……………………………………….55 3-4-2 樣品表面形貌分析…………………………………………55 3-4-3 微結構分析…………………………………………………55 3-4-4 Raman光譜分析……………………………………………55 3-4-5 X-ray光電子能譜分析……………………………………56 3-4-6 結晶結構分析…………………………………………………56 3-4-7 熱重分析………………………………………………………56 3-5 電化學測試分析……………………………………………………58 3-5-1 電容器組裝………………………………………………58 3-5-2 循環伏安法………………………………………………58 3-5-3交流阻抗分析…………………………………………….60 3-6 實驗儀器………………………………………………........62 第四章 孔洞性碳材表面成長奈米碳管……………………………………… 63 4-1 成長CNFs於MPC表面………………………………………………63 4-1-1 顯微結構分析………………………………………………63 4-1-2 XRD晶體結構分析…………………………………………69 4-1-3 物理吸脫附分析……………………………………………71 4-1-4 循環伏安法測試……………………………………………73 4-1-5 交流阻抗分析………………………………………………75 4-2 活性碳纖維布表面成長CNTs……………………………………………………………………78 4-2-1顯微結構分析…………………………………………………79 4-2-2拉曼光譜分析…………………………………………………84 4-2-3物理吸脫附分析………………………………………………86 4-2-4 XPS 分析……………………………………………………88 4-2-5循環伏安法測試………………………………………………90 4-2-6交流阻抗分析…………………………………………………93 第五章 RuO2/CNF電極材料製備與效能評估………………………………. 95 5-1 CNFs前處理及水熱沉積法之評估…………………………………96 5-2 顯微結構分析………………………………………………………100 5-3 熱重分析及物理吸脫附分析………………………………………103 5-4 循環伏安法測試……………………………………………………105 5-5 交流阻抗分析………………………………………………………110 第六章 Ni/CNF電極材料製備與效能評估…………………………………111 6-1 顯微結構分析………………………………………………………111 6-2 XRD與TGA分析……………………………………………………115 6-3 循環伏安測試………………………………………………………117 6-4 交流阻抗分析………………………………………………………120 第七章 結論…………………………………………………………………….121 參考文獻………………………………………………………………………..123 表目錄 表2-1 活性碳纖維布成長CNF前後之比表面積與電容值………………………14 表4-1 MPC、CNF/MPC-800及CNF/MPC-900之比表面積……………………71 表4-2 MPC、CNF/MPC-800及CNF/MPC-900之阻抗分析數值………………76 表4-3 ACC、CNT/ACC-1及CNT/ACC-2之比表面積…………………………86 表4-4 ACC、CNT/ACC-1及CNT/ACC-2之阻抗分析數值……………………94 表5-1 CNFs、RuO2/CNF-1、RuO2/CNF-2、RuO2/CNF-3及pure RuO2之RuO2含量與比表面積…………………104

    參考文獻
    (1) B. E. Conway, “Electrochemical Supercapacitors, Scientific Fundamentals and Technological Applications”, Kluwer-Plenum, New York (1999).
    (2) R. Kötz, M. Carlen, “Principles and applications of electrochemical capacitors” Electrochim. Acta, 45, 2483-2498 (2000).
    (3) A. Burke, “Ultracapacitors: why, how, and where is the technology” J. Power Sources,91, 37-50 (2000).
    (4) R. A. Huggins, “Supercapacitors and electrochemical pulse sources” Solid State Ionics, 134, 179-195 (2000).
    (5) M. Winter, R. J. Brodd, “What are batteries, fuel cells, and supercapacitors? ” Chem. Rev., 104, 4245-4269 (2004).
    (6) Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. T. Xia et al., “Progress of electrochemical capacitor electrode materials: A review” Int. J. Hydrog. Energy ,34, 4889-4899 (2009).
    (7) C. Niu, E. K. Sichel, R. Hoch, D. Moy, Hoeard Tennent, “High power electrochemical capacitors based on carbon nanotube electrodes” Appl. Phys.Lett., 70, 1480-1482 (1997).
    (8) R. Z. Ma, J. Liang, B. Q. Wei, B. Zhang, C. L. Xu, D. H. Wu, “Ultracapacitors: why, how, and where is the technology“ J. Power Sources, 84, 126–129 (1999).
    (9) E. Frackowiak, F. Béguin, “Carbon materials for the electrochemical storage of energy in capacitors” Carbon, 39, 937-950 (2001).
    (10) J. P. Zheng, P. J. Cygan, T. R.Jow, “Hydrous ruthenium oxide as an electrode material for electrochemical capacitors” J. Electrochem. Soc., 142, 2699-2703 (1995).
    (11) C. Lin, James A. Ritter, B. N. Popov, “Characterization of sol-gel-derived cobalt oxide xerogels as electrochemical capacitors” J. Electrochem. Soc., 145,4097-4103 (1998).
    (12) H. Y. Lee, J. B. Goodenough, “Ideal supercapacitor behavior of amorphous V2O5•nH2O in potassium chloride (KCl) aqueous solution” J. Solid State Chemistry, 148, 81-84 (1999).
    (13) C. C. Hu and T. W. Tsou, “Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition” Electrochem. Comm., 4, 105-109 (2002).
    (14) N. L. Wu, S. Y. Wang, C. Y. Han, D. S. Wu, L. R. Shiue, “Electrochemical capacitor of magnetite in aqueous electrolytes” J. Power Sources, 113, 173-178 (2003).
    (15) S. Ghosh, O. Inganas, “Conducting polymer hydrogels as 3D electrodes: applications for supercapacitors” Adv. Mater., 11, 1214-1218 (1999).
    (16) V. Gupta, N. Miura, “electrochemically deposited polyaniline nanowire's network” Electrochem. Solid-State Lett., 8, A630-A632 (2005).
    (17) http://tw.myblog.yahoo.com/jw!SUSt0WeEGQW53.5SbZKR/article?mid=827
    (18) Y. Honda, T. Haramoto, M. Takeshige, H. Shiozaki, T. Kitamura and M. Ishikawa, “Aligned MWCNT sheet electrodes prepared by transfer methodology providing high-power capacitor performance” Electrochem. Solid-State Lett., 10, A106 (2007).
    (19) M. Hahn, M. Baertschi, O. Barbieri, J. Sauter, R. Kötz and R.Gallay, “Interfacial capacitance and electronic conductance of activated carbon double-layer electrodes” Electrochem. Solid-State Lett., 7, A33 (2004).
    (20) C. W. Huang, C. M. Chuang, J. M. Ting and H. Teng, “Significantly enhanced charge conduction in electric double layer capacitors using carbon nanotube-grafted activated carbon electrodes” J. Power Sources, 183, 406-410 (2008).
    (21) C. C. Hu, W. H. Chen, K. H. Chang. “How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors” J. Electrochem. Soc., 151, A281-A290 (2004).
    (22) J. W. Long, K. E. Swider-Lyons, R. M. Stroud, D. R. Rolison, “Design of pore and matter architectures in manganese oxide charge-storage materials” Electrochem. Solid-State Lett., 3, 453-456 (2000).
    (23) S. Hadzi-Jordanov, H. Angerstein-Kozlowska, M. Vukovic and B. E. Conway, “Reversibility and growth behavior of surface oxide films at ruthenium electrodes” J. Electrochem. Soc., 125, 1471-1480 (1978).
    (24) T. C. Wen, C. C. Hu, “Hydrogen and oxygen evolutions on Ru-Ir binary oxides” J. Electrochem. Soc., 139, 2158-2163 (1992).
    (25) S. Trasatti, “Physical electrochemistry of ceramic oxides” Electrochim. Acta, 36, 225-241 (1991).
    (26) C. Arbizzi, M. Mastragotiono, “Polymer-based redox supercapacitors: A comparative study” Electrochem. Acta, 41, 21-26 (1996).
    (27) D. Qu, H. Shi, “Studies of the activated carbons used in double-layer supercapacitors” J. Power Sources, 109, 403-411 (2002).
    (28) T. C. Weng, H. Teng, “Characterization of high Porosity carbon electrodes derived from mesophase pitch for electric double-layer capacitors” J. Electrochem. Soc., 148, A368-A373 (2001).
    (29) J. Lee, S. Yoon, T. Hyeon, S. M. Oh, K. B. Kim, “Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors” Chem. Commun., 21, 2177-2178 (1999).
    (30) J. Y. Ying, C. P. Mehnert, M. Jaroniec, “Synthesis and applications of supramolecular-templated mesoporous materials” Angew Chem. Int. Ed., 38, 56-77 (1999)
    (31) R. Ryoo, S. H. Joo, M. Kruk, M. Jaroniec, “Ordered mesoporous carbons” Adv. Mater., 13, 677-681 (2001).
    (32) K. W. Chang, Z. Y. Lim, F. Y. Du, Y. L. Yang, C. H. Chang, C. C. Hu, et al., “Synthesis of mesoporous carbon by using polymer blend as template for the high power supercapacitor” Diamond Relat. Mater, 18, 448-451 (2009).
    (33) S. Yoon, J. Lee,T Hyeon, S. M. Oh, “Electric double-layer capacitor performance of a new mesoporous carbon” J. Electrochem. Soc., 147, 2507-2512 (2000).
    (34) Y. R. Nian, H. Teng, “Nitric acid modification of activated carbon electrodes for improvement of electrochemical capacitance” J. Electrochem. Soc., 149, A1008-A1014 (2002).
    (35) C. S. Du, N. Pan, “High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition” Nanotechnology, 17, 5314-5318 (2006).
    (36) K. P. Wang, H. Teng, “Structural feature and double-layer capacitive performance of porous carbon powder derived from polyacrylonitrile-based carbon fiber” J. Electrochem. Soc., 154, A993-A998 (2007).
    (37) E. Frackowiak , K. Metenier, V. Bertagna, F. Beguin, “Supercapacitor electrodes from multiwalled carbon nanotubes” Appl. Phys. Lett., 77, 2421–2423 (2000)
    (38) E. Frackowiak, K. Jurewicz, S. Delpeux, F. Beguin, “Nanotubular materials for supercapacitors” J. Power Sources, 97–98, 822–8255 (2001).
    (39) M.A. Montes-Morán, D. Suárez, J.A. Menéndez, E. Fuente, “On the nature of basic sites on carbon surfaces: an overview” Carbon, 42, 1219-1225 (2004).
    (40) K. Kinoshita, Carbon: electrochemical and physicochemical properties, John Wiley & Sons, New York, 1988.
    (41) V. V. Panić, R. M. Stevanović, V. M. Jovanović, A. B. Dekanski, “Electrochemical and capacitive properties of thin-layer carbon black electrodes” J. Power Sources, 181, 186-192 (2008).
    (42) Y. Léon, C. A. Léon, L. R. Radovic, Interfacial chemistry and electrochemistry of carbon surfaces. In: Thrower PA, editor. Chemistry and Physics of Carbon, Vol 24, Marcel DeKKer, New York, 1994.
    (43) T. Momma, X. Liu, T. Osaka, Y. Ushio, Y. Sawada, “Electrochemical modification of active carbon fiber electrode and its application to double-layer capacitor” J. Power Sources, 60, 249-253 (1996).
    (44) C. H. Kim, S. I. Pyun, H. C. Shin, “Kinetics of double-layer charging/discharging of activated carbon electrodes: role of surface acidic functional groups” J. Electrochem. Soc., 149, A93-A98 (2002).
    (45) M. Ishikawa, A. Sakamoto, M. Morita, Y. Matsuda, K. Ishida, “Effect of treatment of activated carbon fiber cloth electrodes with cold plasma upon performance of electric double-layer capacitors” J. Power Sources, 60, 233-238, (1996).
    (46) M. Nakamura, M. Nakanishi, K. Yamamoto, “Influence of physical properties of activated carbons on characteristics of electric double-layer capacitors” J. Power Sources, 60, 225-231, (1996).
    (47) K. H. An, K. K. Jeon, J. K. Heo, S. C. Lim, D. J. Bae, Y. H. Lee, “High-capacitance supercapacitor using a nanocomposite electrode of single-walled carbon nanotube and polypyrrole” J. Electrochem. Soc., 149, A1058-A1062 (2002).
    (48) Q. F. Xiao, X. Zhou, “The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor” Electrochim. Acta, 48, 575-580 (2003).
    (49) Y Show, K Imaizumi, “Decrease in equivalent series resistance of electric double-layer capacitor by addition of carbon nanotube into the activated carbon electrode” Diamond Relat. Mater., 15, 2086-2089 (2006).
    (50) C. Portet, P.L. Taberna, P. Simon, E. Flahaut, “Influence of carbon nanotubes addition on carbon–carbon supercapacitor performances in organic electrolyte” J. Power Sources, 139, 371-378 (2005).
    (51) Y. Piao, K. An, J. Kim, T. Yu, T. Hyeon, “Sea urchin shaped carbon nanostructured materials: carbon nanotubes immobilized on hollow carbon spheres” J. Mater. Chem. 16, 2984-2989 (2006)
    (52) C. H. Wang, H. C. Shih , Y. T. Tsai, H. Y. Du, L. C. Chen, K. H. Chen, “High methanol oxidation activity of electrocatalysts supported by directly grown nitrogen-containing carbon nanotubes on carbon cloth” Electrochim. Acta, 52, 1612-1617 (2006)
    (53) F. Su, X. Li, L. Lv, X.S. Zhao, “Direct carbon patterning on a conducting substrate in an organic liquid” Carbon 44, 799-823 (2006)
    (54) N. Sonoyama, M. Ohshita, A. Nijubu, H. Nishikawa, H. Yanase, J.I. Hayashi, T. Chiba, “Synthesis of carbon nanotubes on carbon fibers by means of two-step thermochemical vapor deposition” Carbon 44, 1754-1761 (2006)
    (55) H. L. Zhang, Y. Zhang, X. G. Zhang, F. Li, C. Liu, J. Tan, H. M. Cheng, “Urchin-like nano/micro hybrid anode materials for lithium ion battery” Carbon 44, 2778-2784 (2006)
    (56) J. M. Rosolen, E. Y. Matsubara, M. S. Marchesin, S. M. Lala, L. A. Montoro, S. Tronto, “Carbon nanotube/felt composite electrodes without polymer binders” J. Power Sources, 162, 620-628 (2006)
    (57) S. Zhua, C. H. Sub, S. L. Lehoczkyb, I. Muntelec, D. Il, “Carbon nanotube growth on carbon fibers” Diamond Relat. Mater., 12, 1825–1828 (2003).
    (58) X. Sun, R. Li, B. Stansfield, J.P. Dodelet, S. De´silets, “3D carbon nanotube network based on a hierarchical structure grown on carbon paper backing” Chem. Phys. Lett., 394, 266–270 (2004).
    (59) Z. G. Zhao , L. J. Ci, H. M. Cheng, J. B. Bai, "The growth of multiwalled carbon nanotubes with different morphologies on carbon fibers" Carbon, 43, 651-673 (2005).
    (60) S. S. Tzeng, K. H. Hung, T. H. Ko, “ Growth of carbon nanofibers on activated carbon fiber fabrics“ Carbon, 44, 859-865 (2006).
    (61) T. H. Ko, K. H. Hung, S. S. Tzeng, J. W. Shen, C. H. Hung, “Carbon nanofibers grown on activated carbon fiber fabrics as electrode of supercapacitors” Phys. Scr., T129, 80–84 (2007).
    (62) J. Melsheimer, D. Ziegler, “The oxygen electrode reaction in acid solutions on RuO2 electrodes prepared by the thermal decomposition method” Thin solid films, 163, 301-308 (1988).
    (63) J. P. Zheng, P. J. Cygan, T. R. Jow, “Hydrous ruthenium oxide as an electrode material for electrochemical capacitors” J. Electrochem. Soc., 142, 2699-2703 (1995).
    (64) K. E. Swider, C. I. Merzbacher, P. L. Hagans, D. R. Rolison, “Synthesis of ruthenium dioxide−titanium dioxide aerogels: redistribution of electrical properties on the nanoscale” Chem. Mater., 9, 1248-1255 (1997).
    (65) M. Ramani, B. S. Haran, R. E. White, B. N. Popov, “Synthesis and characterization of hydrous ruthenium oxide-carbon supercapacitors” J. Electrochem. Soc., 148, A374-A380 (2001)
    (66) J. P. Zheng, T. R. Jow, “High energy and high power density electrochemical capacitors” J. Power Sources, 62, 155-159 (1996).
    (67) K. H. Chang, C. C. Hu, “Oxidative synthesis of RuOx•nH2O with ideal capacitive characteristics for supercapacitors” J. Electrochem. Soc., 151, A958-A964 (2004).
    (68) K. H. Chang, C. C. Hu, “Hydrothermal synthesis of hydrous crystalline RuO2 nanoparticles for supercapacitors” Electrochem. Solid State Lett., 7, A466-A469 (2004).
    (69) K. H. Chang, C. C. Hu, C. Y. Chou, “Textural and capacitive characteristics of hydrothermally derived RuO2•xH2O nanocrystallites: independent control of crystal size and water content” Chem. Mater., 19, 2112-2119 (2007).
    (70) C. C. Hu, Y. H. Huang, “Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical capacitors” J. Electrochem. Soc., 146, 2165-2471 (1999).
    (71) B. O. Park, C. D. Lokhande, H.S. Park, K. D. Jung, O. S. Joo, “Performance of supercapacitor with electrodeposited ruthenium oxide film electrodes—effect of film thickness” J. Power Sources, 134, 148-152 (2004).
    (72) V. Srinivasan, J. W. Weidner, “An electrochemical route for making porous nickel oxide electrochemical capacitors” J. Electrochem. Soc., 144, L210-L213 (1997).
    (73) K. C. Liu, M. A. Anderson, “Porous nickel oxide/nickel films for electrochemical capacitors” J. Electrochem. Soc., 143, 124-130 (1996).
    (74) S. C. Pang, M. A. Anderson,T. W. Chapman, “Novel electrode materials for thin-film ultracapacitors: comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide” J. Electrochem. Soc., 147, 444-450 (2000).
    (75) V. Srinivasan1, J. W. Weidner, "Capacitance studies of cobalt oxide films formed via electrochemical precipitation " J. Power Sources, 108, 15-20 (2002).
    (76) H. K. Kim, T. Y. Seong, J. H. Lim, W. I. Cho, Y. S. Yoon, “Electrochemical and structural properties of radio frequency sputtered cobalt oxide electrodes for thin-film supercapacitors” J. Power Sources, 102, 167-171 (2002).
    (77) D.A. McKeown, P. C. Hagans, L. P. L. Carette, A. E. Russell, K. E. Swider, D. R. Rolison, “Structure of hydrous ruthenium oxides: implications for charge storage” J. Phys. Chem. B, 103, 4825-4832 (1999).
    (78) W. Dmowski, T. Egami, K. E. Swider-Lyons, C. T. Love, D. R. Rolison, “Local atomic structure and conduction mechanism of nanocrystalline hydrous RuO2 from X-ray scattering” J. Phys. Chem. B, 106, 12677-12683 (2002).
    (79) J. W. Long, K. E. Swider, C.I . Merzbacher, D. R. Rolison, "Voltammetric characterization of ruthenium oxide-based aerogels and Other RuO2 Ssolids: The nature of capacitance in nanostructured materials" Langmuir, 15, 780-785 (1999).
    (80) C. C. Hu, W. C. Chen, “Effects of substrates on the capacitive performance of RuOx•nH2O and activated carbon–RuOx electrodes for supercapacitors” Electrochim. Acta, 49, 3469-3477 (2004).
    (81) M. Min, K. Machida, J. H. Jang, K. Naoi, “Hydrous RuO2/carbon black nanocomposites with 3D porous structure by novel incipient wetness method for supercapacitors” J. Electrochem. Soc., 153, A334-A338 (2006).
    (82) J. M. Miller, B. Dunn, “Morphology and electrochemistry of ruthenium/carbon aerogel nanostructures” Langmuir, 15, 799-806 (1999).
    (83) Y. Sato, K. Yomogida, T. Nanaumi, K. Kobayakawa, Y. Ohsawa, M. Kawai, “Electrochemical behavior of activated-carbon capacitor materials loaded with ruthenium oxide” Electrochem. Solid State Lett., 3, 113-116 (2000).
    (84) J. H. Jang, S. Han, T. Hyeon, S. M. Oh, “Electrochemical capacitor performance of hydrous ruthenium oxide/mesoporous carbon composite electrodes” J Power Sources, 123, 79-85 (2003).
    (85) C. Yuan, L. Chen, B. Gao, L. Su, X. Zhang, “Synthesis and utilization of RuO2•xH2O nanodots well dispersed on poly(sodium 4-styrene sulfonate) functionalized multi-walled carbon nanotubes for supercapacitors” J Mater. Chem., 19, 246-252 (2009).
    (86) J. H. Park, J. M. Ko, O. O. Park, “Carbon nanotube/RuO2 nanocomposite electrodes for supercapacitors” J. Electrochem. Soc., 150, A864-A867 (2003).
    (87) A. L. M. Reddy, S. Ramaprabhu, “Nanocrystalline metal oxides dispersed multiwalled carbon nanotubes as supercapacitor electrodes” J. Phys. Chem. C, 111, 7727-7734 (2007).
    (88) H. S. Kim, B. N. Popov, “Characterization of hydrous ruthenium oxide/carbon nanocomposite supercapacitors prepared by a colloidal method” J Power Sources, 104, 52-61 (2002).
    (89) W. Lee, R. S. Mane, V. V. Todkar, S. Lee, O. Egorova, W. S. Chae, et al., “Implication of liquid-phase deposited amorphous RuO2 electrode for electrochemical supercapacitor” Electrochem. Solid State Lett., 10, A225-A227 (2007).
    (90) B Brunauer, The Adsorption of Gases and Vapor. Princeton University, Princeton, New York, 1943.
    (91) V. Alfredsson, M. W. Anderson, “Structure of MCM-48 revealed by transmission electron microscopy” Chem. Mater. 8, 1141-1146 (1996).
    (92) A. H. Schoen, NASH Technical Note D-5541, NASH, Washington DC, 1970.
    (93) M. A. Tamor, W. C. Vassell, “Raman ‘‘fingerprinting’’ of amorphous carbon films” J. Appl. Phys., 76, 3823-3830 (1994).
    (94) J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt, S. R. P. Silva, “Raman spectroscopy on amorphous carbon films” J. Appl. Phys., 80, 440-447 (1996).
    (95) A.C. Ferrari, J.Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon” Phys. Rev. B, 61, 14095-14107 (2000).
    (96) P.C. Eklund, C. Brabec, M. Buongiorno, A. Maiti, C. Roland, B.I. Yakobson, “Large-scale purification of single-wall carbon nanotubes: process, product, and characterization” Appl.Phys. A-Mater., 67, 29-37 (1998).
    (97) C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, G. E. Muilenberg, Handbook of X-ray photoelectron spectroscopy, Perkin-Elmer, Eden Prairie, Minnesota, 1979.
    (98) H. D. Young, Physics, Addison-Wesley Publishing Co., New York, 1992.
    (99) A. J. Bard, L. R. Faulkner, Electrochemical Principles, Methods and Applications, Oxford University, Britain, 1996.
    (100) D. Qu, H. Shi, “Studies of activated carbons used in double-layer capacitors” J. Power Sources, 74, 99-107 (1998).
    (101) A. J. Bard, L. R. Faulkner, Electrochemical Methods Fundamental and Applications, Jhon Wiley & Sons, Canada, 1980.
    (102) C. M. Brett, A. M. O. Breet, Electrochemistry-Principles, Methods, and Applications, Oxford, New York, 1993.
    (103) G. J. Lee, S. I. Pyun, “Effect of microcrystallite structures on electrochemical characteristics of mesoporous carbon electrodes for electric double-layer capacitors” Electrochim. Acta, 51 3029-3038 (2006).
    (104) Z. Y. Juang, J. F. Lai, C. H. Weng, J. H. Lee, H. J. Lai, T. S. Lai, et al., “On the kinetics of carbon nanotube growth by thermal CVD method” Diamond Relat. Mater., 13, 2140-2146 (2004).
    (105) Z. Y. Juang, I. P. Chien, J. F. Lai, T. S. Lai, C. H. Tsai, “The effects of ammonia on the growth of large-scale patterned aligned carbon nanotubes using thermal chemical vapor deposition method” Diamond Relat. Mater., 13, 1203-1209 (2004).
    (106) B.D. Cullity and S.R. Stock," Elements of X-ray Diffraction", 3rd Edition, Prentice Hall, 2001.
    (107) L. G. Austin, E. G. Gagnon, “The triangular voltage sweep method for determining double-layer capacity of porous electrodes” J. Electrochem. Soc., 120, 251-254 (1973).
    (108) T. Osaka, X. Liu, M. Nojima, T. Momma, “ An electrochemical double layer capacitor using an activated carbon electrode with gel electrolyte binder“ J. Electrochem. Soc., 146, 1724-1729 (1999).
    (109) J. M. Ting, S. H. Lin, “Growth and characteristics of carbon nanotubes obtained under different C2H2/H2/NH3 concentrations” Carbon, 45, 1934-1940 (2007).
    (110) S. H. Lin, D. K. Mishra, J. M. Ting, “Effect of ammonia on the growth of carbon nanotubes” J. Nanosci. Nanotechnol., 8, 2647-2650 (2008).
    (111) Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, ; P. Bush, M. P. Siegel, P. N. Provencio, “Synthesis of large arrays of well-aligned carbon nanotubes on glass” Science, 282, 1105-1107 (1998).
    (112) C. J. Lee, D. W. Kim, T. J. Lee, Y. C. Choi, Y. S. Park, Y. H. Lee, et al., “ Synthesis of aligned carbon nanotubes using thermal chemical vapor deposition“ Chem. Phys. Lett., 312, 461-468 (1999).
    (113) J. A. Menéndez, B. Xia,J. Phillips, L. R. Radovic, “On the modification and characterization of chemical surface properties of activated carbon: microcalorimetric, electrochemical, and thermal desorption probes” Langmuir, 13, 3414-3421 (1997).
    (114) L. C. A. Oliveira, C. N. Silva, M. I. Yoshida, R. M. Lago, “The effect of H2 treatment on the activity of activated carbon for the oxidation of organic contaminants in water and the H2O2 decomposition” Carbon, 42, 2279-2284 (2004).
    (115) A. Swiatkowski, M. Pakula, S. Biniak, M. Walczyk, “Influence of the surface chemistry of modified activated carbon on its electrochemical behaviour in the presence of lead(II) ions” Carbon, 42, 3057-3069 (2004).
    (116) M. Pakula, S. Biniak, A. Swiatkowski, “Changes in the surface chemistry and adsorptive properties of active carbon previously oxidised and heat-treated at various temperatures. II. electrochemical investigations of surface chemistry” Adsorpt. Sci. Technol., 20, 583-594 (2002).
    (117) M. K. van der Lee, A. J. van Dillen, J. H. Bitter, K. P. de Jong, “Deposition precipitation for the preparation of carbon nanofiber supported nickel catalysts“ J. Am. Chem. Soc., 127, 13573-13582 (2005).
    (118) D. Tasis, N. Tagmatarchis, A. Bianco and M. Prato, “Chemistry of carbon nanotubes” Chem. Rev., 106, 1105-1136 (2006).
    (119) G. Mul, W. Zhu, F. Kapteijn, A. J. Moulijin, “The effect of NOx and CO on the rate of transition metal oxide catalyzed carbon black oxidation: An exploratory study“ Appl. Catal. B-Environ., 17, 205-220 (1998).
    (120) S. L. Medway, C. A. Lucas, A. Kowal, R. J. Nichols and D. Johnson, “In situ studies of the oxidation of nickel electrodes in alkaline solution” J. electroanal. Chem., 587, 172-181 (2006).
    (121) Y. L. Tai, H. Teng, “Modification of porous carbon with nickel oxide impregnation to enhance the electrochemical capacitance and conductivity” Carbon, 42, 2335-2338 (2004).
    (122) V. Srinivasan, J. W. Weidner, “Studies on the capacitance of nickel oxide films: effect of heating temperature and electrolyte concentration” J. Electrochem. Soc., 147, 880-885 (2000).

    下載圖示 校內:2016-07-18公開
    校外:2019-07-18公開
    QR CODE