| 研究生: |
吳陳宗 Wu, Chen-Zong |
|---|---|
| 論文名稱: |
水溶性聚(N-乙烯甲醯胺)黏著劑應用於鋰離子電池之矽負極 Poly(N-vinylformamide) as Water-soluble Binder for Silicon Anode in Lithium-ion Battery |
| 指導教授: |
侯聖澍
Hou, Sheng-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 聚(N-乙烯甲醯胺) 、黏著劑 、矽負極 、全電池 、鋰電池 |
| 外文關鍵詞: | Silicon anode, N-Methylacetamide, Binder:Fullcell, Li-Ion Batteries |
| 相關次數: | 點閱:59 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究分為兩部分,第一部分為利用聚(N-乙烯甲醯胺)作為鋰離子電池中矽負極的水性黏著劑,由於PNVF可以溶在水中,其溶液也呈現中性,所以在製程上可以達到環保以及永續發展的製程。PNVF作為非結晶高分子不會阻擋鋰離子的傳導,並且其可以與矽表面之氧化層產生氫鍵以增加矽顆粒的穩定性及附著力,本論文將利用電化學方法來探討PNVF於矽負極黏著劑中的應用,以及探討添加劑以及黏著劑於矽負極中的影響和重要性,並且以臨場的電化學測試探討矽負極所發生之反應,還有研究其破裂機制。
由於現代商用以及研究方面大多以鋰金屬作為負極材料,但是鋰金屬會有鋰晶枝等等所衍生的安全問題,所以需要尋找替代物,而矽作為地殼中含量第二豐富之元素,其理論電容也與鋰金屬差不多,所以是非常好的替代品。而本論文中第二部分將以第一部分以PNVF作為黏著劑所製作之矽負極極片,與磷酸鋰鐵正極,共同組成全電池,並且探討全電池中預鋰化的重要性以及全電池的電化學性能。
In this study, we introduce poly(N-vinylformamide) as a efficient binder for the silicon anode. And this study is divided into two parts. The first part is the use of poly(N-vinylformamide) as the water-soluble binder of the silicon anode in lithium-ion batteries. Since PNVF can be dissolved in water, the solution is also neutral, so in the process can achieve environmental protection and sustainable development process of battery industry. As a non-crystalline polymer, PNVF doesn’t block the conduction of lithium ions, and it can generate hydrogen bonds with the oxide layer on the surface of silicon to increase the stability and adhesion of silicon particle. This study will use electrochemical methods to discuss PNVF in silicon anodes, as well as the influence and importance of additives and adhesives in silicon anodes, and the use of in-situ electrochemical testing to explore the reactions that occur in silicon anodes and study of their rupture mechanism.
Since most of the recent research still use lithium metal as the negative electrode material, but lithium metal has some safety problems like dendrite, and it will cause some safety issue, so it is necessary to find alternatives, and silicon is the second most abundant element in the crust, and its theoretical capacitance is also similar to lithium metal, so it can be a very good candidate. In the second part of this study, the silicon anode made with PNVF as the binder in the first part will be combined with the lithium iron phosphate cathode to form a Full battery, and we will discuss the importance of pre-lithiation in the Full battery and the it’s Electrochemical performance.
1. Cen, Y.; Sisson, R. D.; Qin, Q.; Liang, J., Current progress of Si/graphene nanocomposites for lithium-ion batteries. C—Journal of Carbon Research 2018, 4 (1), 18.
2. Yoshino, A., The birth of the lithium‐ion battery. Angewandte Chemie International Edition 2012, 51 (24), 5798-5800.
3. Thackeray, M. M.; Wolverton, C.; Isaacs, E. D., Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy & Environmental Science 2012, 5 (7), 7854-7863.
4. Boukamp, B.; Lesh, G.; Huggins, R., All‐solid lithium electrodes with mixed‐conductor matrix. Journal of The Electrochemical Society 1981, 128 (4), 725.
5. Wen, K.; Liu, L.; Chen, S.; Zhang, S., A bidirectional growth mechanism for a stable lithium anode by a platinum nanolayer sputtered on a polypropylene separator. RSC advances 2018, 8 (23), 13034-13039.
6. Levasseur, S.; Ménétrier, M.; Delmas, C., On the dual effect of Mg doping in LiCoO2 and Li1+ δCoO2: structural, electronic properties, and 7Li MAS NMR studies. Chemistry of materials 2002, 14 (8), 3584-3590.
7. Barker, J.; Pynenburg, R.; Koksbang, R.; Saidi, M., An electrochemical investigation into the lithium insertion properties of LixCoO2. Electrochimica acta 1996, 41 (15), 2481-2488.
8. Marzec, J.; Świerczek, K.; Przewoźnik, J.; Molenda, J.; Simon, D.; Kelder, E.; Schoonman, J., Conduction mechanism in operating a LiMn2O4 cathode. Solid State Ionics 2002, 146 (3-4), 225-237.
9. Cao, F.; Prakash, J., A comparative electrochemical study of LiMn2O4 spinel thin-film and porous laminate. Electrochimica Acta 2002, 47 (10), 1607-1613.
10. Shi, S.; Liu, L.; Ouyang, C.; Wang, D.-s.; Wang, Z.; Chen, L.; Huang, X., Enhancement of electronic conductivity of LiFePO 4 by Cr doping and its identification by first-principles calculations. Physical Review B 2003, 68 (19), 195108.
11. Prosini, P. P.; Lisi, M.; Zane, D.; Pasquali, M., Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ionics 2002, 148 (1-2), 45-51.
12. Padhi, A.; Nanjundaswamy, K.; Masquelier, C.; Okada, S.; Goodenough, J. B., Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. Journal of the Electrochemical Society 1997, 144 (5), 1609.
13. Thackeray, M.; De Kock, A.; David, W., Synthesis and structural characterization of defect spinels in the lithium-manganese-oxide system. Materials Research Bulletin 1993, 28 (10), 1041-1049.
14. Shu, J.; Yi, T.-F.; Shui, M.; Wang, Y.; Zhu, R.-S.; Chu, X.-F.; Huang, F.; Xu, D.; Hou, L., Comparison of electronic property and structural stability of LiMn2O4 and LiNi0. 5Mn1. 5O4 as cathode materials for lithium-ion batteries. Computational materials science 2010, 50 (2), 776-779.
15. He, X.; Li, J.; Cai, Y.; Wang, Y.; Ying, J.; Jiang, C.; Wan, C., Preparation of co-doped spherical spinel LiMn2O4 cathode materials for Li-ion batteries. Journal of Power Sources 2005, 150, 216-222.
16. Bie, Y.; Yang, J.; Lu, W.; Lei, Z.; Nuli, Y.; Wang, J., A Facile 3D Binding Approach for High Si Loading Anodes. Electrochimica Acta 2016, 212, 141-146.
17. Higgins, T. M.; Park, S.-H.; King, P. J.; Zhang, C.; McEvoy, N.; Berner, N. C.; Daly, D.; Shmeliov, A.; Khan, U.; Duesberg, G., A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes. Acs Nano 2016, 10 (3), 3702-3713.
18. Beaulieu, L.; Hatchard, T.; Bonakdarpour, A.; Fleischauer, M.; Dahn, J., Reaction of Li with alloy thin films studied by in situ AFM. Journal of The Electrochemical Society 2003, 150 (11), A1457-A1464.
19. Hatchard, T.; Dahn, J., In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. Journal of The Electrochemical Society 2004, 151 (6), A838-A842.
20. Li, J.; Dahn, J., An in situ X-ray diffraction study of the reaction of Li with crystalline Si. Journal of The Electrochemical Society 2007, 154 (3), A156-A161.
21. Zhang, W.-J., A review of the electrochemical performance of alloy anodes for lithium-ion batteries. Journal of Power Sources 2011, 196 (1), 13-24.
22. Liang, B.; Liu, Y.; Xu, Y., Silicon-based materials as high capacity anodes for next generation lithium ion batteries. Journal of Power sources 2014, 267, 469-490.
23. Wen, C. J.; Huggins, R. A., Chemical diffusion in intermediate phases in the lithium-silicon system. Journal of solid state chemistry 1981, 37 (3), 271-278.
24. Chan, C. K.; Ruffo, R.; Hong, S. S.; Cui, Y., Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes. Journal of Power Sources 2009, 189 (2), 1132-1140.
25. McDowell, M. T.; Ryu, I.; Lee, S. W.; Wang, C.; Nix, W. D.; Cui, Y., Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy. Advanced Materials 2012, 24 (45), 6034-6041.
26. Zhao, K.; Pharr, M.; Wan, Q.; Wang, W. L.; Kaxiras, E.; Vlassak, J. J.; Suo, Z., Concurrent reaction and plasticity during initial lithiation of crystalline silicon in lithium-ion batteries. Journal of The Electrochemical Society 2011, 159 (3), A238.
27. Li, J.-Y.; Xu, Q.; Li, G.; Yin, Y.-X.; Wan, L.-J.; Guo, Y.-G., Research progress regarding Si-based anode materials towards practical application in high energy density Li-ion batteries. Materials Chemistry Frontiers 2017, 1 (9), 1691-1708.
28. Kasavajjula, U.; Wang, C.; Appleby, A. J., Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells. Journal of power sources 2007, 163 (2), 1003-1039.
29. Liu, X. H.; Zhong, L.; Huang, S.; Mao, S. X.; Zhu, T.; Huang, J. Y., Size-dependent fracture of silicon nanoparticles during lithiation. ACS nano 2012, 6 (2), 1522-1531.
30. Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y., High-performance lithium battery anodes using silicon nanowires. Nature nanotechnology 2008, 3 (1), 31.
31. Park, M.-H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J., Silicon nanotube battery anodes. Nano letters 2009, 9 (11), 3844-3847.
32. Balbuena, P. B.; Wang, Y., Lithium-ion batteries: solid-electrolyte interphase. Imperial college press: 2004.
33. Choi, N.-S.; Yew, K. H.; Lee, K. Y.; Sung, M.; Kim, H.; Kim, S.-S., Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode. Journal of Power Sources 2006, 161 (2), 1254-1259.
34. Lv, R.; Yang, J.; Wang, J.; NuLi, Y., Electrodeposited porous-microspheres Li–Si films as negative electrodes in lithium-ion batteries. Journal of Power Sources 2011, 196 (8), 3868-3873.
35. Kim, J. S.; Byun, D.; Lee, J. K., Electrochemical characteristics of amorphous silicon thin film electrode with fluoroethylene carbonate additive. Current Applied Physics 2014, 14 (4), 596-602.
36. Etacheri, V.; Haik, O.; Goffer, Y.; Roberts, G. A.; Stefan, I. C.; Fasching, R.; Aurbach, D., Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes. Langmuir 2012, 28 (1), 965-976.
37. Hy, S.; Chen, Y.-H.; Cheng, H.-M.; Pan, C.-J.; Cheng, J.-H.; Rick, J.; Hwang, B.-J., Stabilizing nanosized Si anodes with the synergetic usage of atomic layer deposition and electrolyte additives for Li-ion batteries. ACS applied materials & interfaces 2015, 7 (25), 13801-13807.
38. Bordes, A.; Eom, K.; Fuller, T. F., The effect of fluoroethylene carbonate additive content on the formation of the solid-electrolyte interphase and capacity fade of Li-ion full-cell employing nano Si–graphene composite anodes. Journal of Power Sources 2014, 257, 163-169.
39. Profatilova, I. A.; Stock, C.; Schmitz, A.; Passerini, S.; Winter, M., Enhanced thermal stability of a lithiated nano-silicon electrode by fluoroethylene carbonate and vinylene carbonate. Journal of power sources 2013, 222, 140-149.
40. Zhou, X.; Yin, Y. X.; Wan, L. J.; Guo, Y. G., Self‐assembled nanocomposite of silicon nanoparticles encapsulated in graphene through electrostatic attraction for lithium‐ion batteries. Advanced Energy Materials 2012, 2 (9), 1086-1090.
41. Zhao, X.; Hayner, C. M.; Kung, M. C.; Kung, H. H., In‐plane vacancy‐enabled high‐power Si–graphene composite electrode for lithium‐ion batteries. Advanced Energy Materials 2011, 1 (6), 1079-1084.
42. Wang, W.; Kumta, P. N., Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes. ACS nano 2010, 4 (4), 2233-2241.
43. Martin, C.; Crosnier, O.; Retoux, R.; Bélanger, D.; Schleich, D. M.; Brousse, T., Chemical coupling of carbon nanotubes and silicon nanoparticles for improved negative electrode performance in lithium‐ion batteries. Advanced Functional Materials 2011, 21 (18), 3524-3530.
44. Hu, Y. S.; Demir‐Cakan, R.; Titirici, M. M.; Müller, J. O.; Schlögl, R.; Antonietti, M.; Maier, J., Superior storage performance of a Si@ SiOx/C nanocomposite as anode material for lithium‐ion batteries. Angewandte Chemie International Edition 2008, 47 (9), 1645-1649.
45. Lv, P.; Zhao, H.; Gao, C.; Zhang, T.; Liu, X., Highly efficient and scalable synthesis of SiOx/C composite with core-shell nanostructure as high-performance anode material for lithium ion batteries. Electrochimica Acta 2015, 152, 345-351.
46. Liu, N.; Wu, H.; McDowell, M. T.; Yao, Y.; Wang, C.; Cui, Y., A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano letters 2012, 12 (6), 3315-3321.
47. Liu, N.; Lu, Z.; Zhao, J.; McDowell, M. T.; Lee, H.-W.; Zhao, W.; Cui, Y., A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nature nanotechnology 2014, 9 (3), 187.
48. Franco Gonzalez, A.; Yang, N.-H.; Liu, R.-S., Silicon anode design for lithium-ion batteries: Progress and perspectives. The Journal of Physical Chemistry C 2017, 121 (50), 27775-27787.
49. Ryu, J. H.; Kim, J. W.; Sung, Y.-E.; Oh, S. M., Failure modes of silicon powder negative electrode in lithium secondary batteries. Electrochemical and Solid State Letters 2004, 7 (10), A306.
50. Guerfi, A.; Kaneko, M.; Petitclerc, M.; Mori, M.; Zaghib, K., LiFePO4 water-soluble binder electrode for Li-ion batteries. Journal of Power Sources 2007, 163 (2), 1047-1052.
51. Zhang, Z.; Zeng, T.; Qu, C.; Lu, H.; Jia, M.; Lai, Y.; Li, J., Cycle performance improvement of LiFePO4 cathode with polyacrylic acid as binder. Electrochimica acta 2012, 80, 440-444.
52. Magasinski, A.; Zdyrko, B.; Kovalenko, I.; Hertzberg, B.; Burtovyy, R.; Huebner, C. F.; Fuller, T. F.; Luzinov, I.; Yushin, G., Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. ACS applied materials & interfaces 2010, 2 (11), 3004-3010.
53. Yoon, J.; Oh, D. X.; Jo, C.; Lee, J.; Hwang, D. S., Improvement of desolvation and resilience of alginate binders for Si-based anodes in a lithium ion battery by calcium-mediated cross-linking. Physical Chemistry Chemical Physics 2014, 16 (46), 25628-25635.
54. Kwon, T.-w.; Jeong, Y. K.; Deniz, E.; AlQaradawi, S. Y.; Choi, J. W.; Coskun, A., Dynamic cross-linking of polymeric binders based on host–guest interactions for silicon anodes in lithium ion batteries. ACS nano 2015, 9 (11), 11317-11324.
55. Wei, L.; Chen, C.; Hou, Z.; Wei, H., Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries. Scientific reports 2016, 6, 19583.
56. Yoon, D.-E.; Hwang, C.; Kang, N.-R.; Lee, U.; Ahn, D.; Kim, J.-Y.; Song, H.-K., Dependency of electrochemical performances of silicon lithium-ion batteries on glycosidic linkages of polysaccharide binders. ACS applied materials & interfaces 2016, 8 (6), 4042-4047.
57. Bie, Y.; Yang, J.; Nuli, Y.; Wang, J., Natural karaya gum as an excellent binder for silicon-based anodes in high-performance lithium-ion batteries. Journal of Materials Chemistry A 2017, 5 (5), 1919-1924.
58. He, J.; Zhang, L., Polyvinyl alcohol grafted poly (acrylic acid) as water-soluble binder with enhanced adhesion capability and electrochemical performances for Si anode. Journal of alloys and compounds 2018, 763, 228-240.
59. Li, J.; Zhang, G.; Yang, Y.; Yao, D.; Lei, Z.; Li, S.; Deng, Y.; Wang, C., Glycinamide modified polyacrylic acid as high-performance binder for silicon anodes in lithium-ion batteries. Journal of Power Sources 2018, 406, 102-109.
60. Song, J.; Zhou, M.; Yi, R.; Xu, T.; Gordin, M. L.; Tang, D.; Yu, Z.; Regula, M.; Wang, D., Interpenetrated gel polymer binder for high‐performance silicon anodes in lithium‐ion batteries. Advanced functional materials 2014, 24 (37), 5904-5910.
61. Liu, Z.; Han, S.; Xu, C.; Luo, Y.; Peng, N.; Qin, C.; Zhou, M.; Wang, W.; Chen, L.; Okada, S., In situ crosslinked PVA–PEI polymer binder for long-cycle silicon anodes in Li-ion batteries. RSC advances 2016, 6 (72), 68371-68378.
62. Bie, Y.; Yang, J.; Liu, X.; Wang, J.; Nuli, Y.; Lu, W., Polydopamine wrapping silicon cross-linked with polyacrylic acid as high-performance anode for lithium-ion batteries. ACS applied materials & interfaces 2016, 8 (5), 2899-2904.
63. Luo, L.; Xu, Y.; Zhang, H.; Han, X.; Dong, H.; Xu, X.; Chen, C.; Zhang, Y.; Lin, J., Comprehensive understanding of high polar polyacrylonitrile as an effective binder for Li-ion battery nano-Si anodes. ACS applied materials & interfaces 2016, 8 (12), 8154-8161.
64. Zhang, G.; Yang, Y.; Chen, Y.; Huang, J.; Zhang, T.; Zeng, H.; Wang, C.; Liu, G.; Deng, Y., A Quadruple‐Hydrogen‐Bonded Supramolecular Binder for High‐Performance Silicon Anodes in Lithium‐Ion Batteries. Small 2018, 14 (29), 1801189.
65. Lee, S.-Y.; Choi, Y.; Hong, K.-S.; Lee, J. K.; Kim, J.-Y.; Bae, J.-S.; Jeong, E. D., Influence of EDTA in poly (acrylic acid) binder for enhancing electrochemical performance and thermal stability of silicon anode. Applied Surface Science 2018, 447, 442-451.
66. Lim, S.; Lee, K.; Shin, I.; Tron, A.; Mun, J.; Yim, T.; Kim, T.-H., Physically cross-linked polymer binder based on poly (acrylic acid) and ion-conducting poly (ethylene glycol-co-benzimidazole) for silicon anodes. Journal of Power Sources 2017, 360, 585-592.
67. Jeena, M.; Lee, J.-I.; Kim, S. H.; Kim, C.; Kim, J.-Y.; Park, S.; Ryu, J.-H., Multifunctional molecular design as an efficient polymeric binder for silicon anodes in lithium-ion batteries. ACS applied materials & interfaces 2014, 6 (20), 18001-18007.
68. Koo, B.; Kim, H.; Cho, Y.; Lee, K. T.; Choi, N. S.; Cho, J., A highly cross‐linked polymeric binder for high‐performance silicon negative electrodes in lithium ion batteries. Angewandte Chemie International Edition 2012, 51 (35), 8762-8767.
69. Wei, L.; Hou, Z., High performance polymer binders inspired by chemical finishing of textiles for silicon anodes in lithium ion batteries. Journal of Materials Chemistry A 2017, 5 (42), 22156-22162.
70. Nguyen, C. C.; Yoon, T.; Seo, D. M.; Guduru, P.; Lucht, B. L., Systematic investigation of binders for silicon anodes: interactions of binder with silicon particles and electrolytes and effects of binders on solid electrolyte interphase formation. ACS applied materials & interfaces 2016, 8 (19), 12211-12220.
71. Yuca, N.; Çolak, Ü., A facile and functional process to enhance electrochemical performance of silicon anode in lithium ion batteries. Electrochimica Acta 2016, 222, 1538-1544.
72. Karkar, Z.; Guyomard, D.; Roué, L.; Lestriez, B., A comparative study of polyacrylic acid (PAA) and carboxymethyl cellulose (CMC) binders for Si-based electrodes. Electrochimica Acta 2017, 258, 453-466.
73. Kovalenko, I.; Zdyrko, B.; Magasinski, A.; Hertzberg, B.; Milicev, Z.; Burtovyy, R.; Luzinov, I.; Yushin, G., A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 2011, 334 (6052), 75-79.
74. De Kerchove, A. J.; Elimelech, M., Formation of polysaccharide gel layers in the presence of Ca2+ and K+ ions: Measurements and mechanisms. Biomacromolecules 2007, 8 (1), 113-121.
75. Chai, L.; Qu, Q.; Zhang, L.; Shen, M.; Zhang, L.; Zheng, H., Chitosan, a new and environmental benign electrode binder for use with graphite anode in lithium-ion batteries. Electrochimica Acta 2013, 105, 378-383.
76. Yue, L.; Zhang, L.; Zhong, H., Carboxymethyl chitosan: A new water soluble binder for Si anode of Li-ion batteries. Journal of power sources 2014, 247, 327-331.
77. Liu, G., S, Xun, N, Vukmirovic, X, Song, P. Olalde-Velasco, H. Zheng, VS Battaglia, L. Wang, W. Yang. Adv. Mater 2011, 23, 4679.
78. Wang, C.; Wu, H.; Chen, Z.; McDowell, M. T.; Cui, Y.; Bao, Z., Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nature chemistry 2013, 5 (12), 1042.
79. Wu, Z.-H.; Yang, J.-Y.; Yu, B.; Shi, B.-M.; Zhao, C.-R.; Yu, Z.-L., Self-healing alginate–carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries. Rare Metals 2019, 38 (9), 832-839.
80. Assresahegn, B. D.; Bélanger, D., Synthesis of binder-like molecules covalently linked to silicon nanoparticles and application as anode material for lithium-ion batteries without the use of electrolyte additives. Journal of Power Sources 2017, 345, 190-201.
81. Jeong, Y. K.; Kwon, T.-w.; Lee, I.; Kim, T.-S.; Coskun, A.; Choi, J. W., Hyperbranched β-cyclodextrin polymer as an effective multidimensional binder for silicon anodes in lithium rechargeable batteries. Nano letters 2014, 14 (2), 864-870.
82. Jeong, Y. K.; Kwon, T.-w.; Lee, I.; Kim, T.-S.; Coskun, A.; Choi, J. W., Millipede-inspired structural design principle for high performance polysaccharide binders in silicon anodes. Energy & Environmental Science 2015, 8 (4), 1224-1230.
83. Hwang, C.; Joo, S.; Kang, N.-R.; Lee, U.; Kim, T.-H.; Jeon, Y.; Kim, J.; Kim, Y.-J.; Kim, J.-Y.; Kwak, S.-K., Breathing silicon anodes for durable high-power operations. Scientific reports 2015, 5, 14433.
84. Chen, C.; Lee, S. H.; Cho, M.; Kim, J.; Lee, Y., Cross-linked chitosan as an efficient binder for Si anode of Li-ion batteries. ACS applied materials & interfaces 2016, 8 (4), 2658-2665.
85. Feng, K.; Li, M.; Liu, W.; Kashkooli, A. G.; Xiao, X.; Cai, M.; Chen, Z., Silicon‐based anodes for lithium‐ion batteries: From fundamentals to practical applications. Small 2018, 14 (8), 1702737.
86. Yin, J.; Wada, M.; Yamamoto, K.; Kitano, Y.; Tanase, S.; Sakai, T., Micrometer-scale amorphous Si thin-film electrodes fabricated by electron-beam deposition for Li-ion batteries. Journal of the Electrochemical Society 2006, 153 (3), A472-A477.
87. Cui, L.-F.; Yang, Y.; Hsu, C.-M.; Cui, Y., Carbon− silicon core− shell nanowires as high capacity electrode for lithium ion batteries. Nano letters 2009, 9 (9), 3370-3374.
88. Prosini, P. P.; Cento, C.; Rufoloni, A.; Rondino, F.; Santoni, A., A lithium-ion battery based on LiFePO4 and silicon nanowires. Solid State Ionics 2015, 269, 93-97.
89. Farmakis, F.; Elmasides, C.; Selinis, P.; Georgoulas, N., Impact of electrolyte on the electrochemical performance of Lithium-ion half and full cells with Silicon film anodes. Electrochimica Acta 2017, 245, 99-106.
90. Wang, C.; Yu, J.; Li, S.; Lu, Z., Boosting the cycling stability of LixSi alloy microparticles through electroless copper deposition. Chemical Engineering Journal 2019, 370, 1019-1026.
91. Ji, L.; Zheng, H.; Ismach, A.; Tan, Z.; Xun, S.; Lin, E.; Battaglia, V.; Srinivasan, V.; Zhang, Y., Graphene/Si multilayer structure anodes for advanced half and full lithium-ion cells. Nano Energy 2012, 1 (1), 164-171.
92. Bard, A. J.; Faulkner, L. R., Fundamentals and applications. Electrochemical Methods 2001, 2 (482), 580-632.
93. Langhus, D. L., Analytical Electrochemistry, (Wang, Joseph). ACS Publications: 2001.
94. Instruments, G., Basics of electrochemical impedance spectroscopy. G. Instruments, Complex impedance in Corrosion 2007, 1-30.
95. Andre, D.; Meiler, M.; Steiner, K.; Wimmer, C.; Soczka-Guth, T.; Sauer, D., Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation. Journal of Power Sources 2011, 196 (12), 5334-5341.
96. Levi, M.; Gamolsky, K.; Aurbach, D.; Heider, U.; Oesten, R., On electrochemical impedance measurements of LixCo0. 2Ni0. 8O2 and LixNiO2 intercalation electrodes. Electrochimica Acta 2000, 45 (11), 1781-1789.
97. Vetter, J.; Novák, P.; Wagner, M. R.; Veit, C.; Möller, K.-C.; Besenhard, J.; Winter, M.; Wohlfahrt-Mehrens, M.; Vogler, C.; Hammouche, A., Ageing mechanisms in lithium-ion batteries. Journal of power sources 2005, 147 (1-2), 269-281.
98. McGregor, H. C.; Wang, W.; Short, M. A.; Zeng, H., Clinical utility of Raman spectroscopy: current applications and ongoing developments. Adv. Health Care Technol. 2016, 2, 13-29.
99. Talaie, E.; Bonnick, P.; Sun, X.; Pang, Q.; Liang, X.; Nazar, L. F., Methods and protocols for electrochemical energy storage materials research. Chemistry of Materials 2017, 29 (1), 90-105.
100. Key, B.; Morcrette, M.; Tarascon, J.-M.; Grey, C. P., Pair distribution function analysis and solid state NMR studies of silicon electrodes for lithium ion batteries: understanding the (de) lithiation mechanisms. Journal of the American Chemical Society 2011, 133 (3), 503-512.
101. Chevrier, V.; Dahn, J. R., First principles model of amorphous silicon lithiation. Journal of the Electrochemical Society 2009, 156 (6), A454-A458.
102. Obrovac, M.; Christensen, L., Structural changes in silicon anodes during lithium insertion/extraction. Electrochemical and Solid State Letters 2004, 7 (5), A93.
103. Zeng, Z.; Liu, N.; Zeng, Q.; Lee, S. W.; Mao, W. L.; Cui, Y., In situ measurement of lithiation-induced stress in silicon nanoparticles using micro-Raman spectroscopy. Nano Energy 2016, 22, 105-110.
104. Holtstiege, F.; Bärmann, P.; Nölle, R.; Winter, M.; Placke, T., Pre-lithiation strategies for rechargeable energy storage technologies: Concepts, promises and challenges. Batteries 2018, 4 (1), 4.
105. Holtstiege, F.; Wilken, A.; Winter, M.; Placke, T., Running out of lithium? A route to differentiate between capacity losses and active lithium losses in lithium-ion batteries. Physical Chemistry Chemical Physics 2017, 19 (38), 25905-25918.
106. Zuo, X.; Zhu, J.; Müller-Buschbaum, P.; Cheng, Y.-J., Silicon based lithium-ion battery anodes: A chronicle perspective review. Nano Energy 2017, 31, 113-143.
107. Winter, M.; Appel, W. K.; Evers, B.; Hodal, T.; Möller, K.-C.; Schneider, I.; Wachtler, M.; Wagner, M. R.; Wrodnigg, G. H.; Besenhard, J. O., Studies on the anode/electrolyte interface in lithium ion batteries. In Electroactive Materials, Springer: 2001; pp 53-66.
108. Aravindan, V.; Lee, Y. S.; Madhavi, S., Best Practices for Mitigating Irreversible Capacity Loss of Negative Electrodes in Li‐Ion Batteries. Advanced Energy Materials 2017, 7 (17), 1602607.
109. Kim, H. J.; Choi, S.; Lee, S. J.; Seo, M. W.; Lee, J. G.; Deniz, E.; Lee, Y. J.; Kim, E. K.; Choi, J. W., Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells. Nano letters 2016, 16 (1), 282-288.
110. Forney, M. W.; Ganter, M. J.; Staub, J. W.; Ridgley, R. D.; Landi, B. J., Prelithiation of silicon–carbon nanotube anodes for lithium ion batteries by stabilized lithium metal powder (SLMP). Nano letters 2013, 13 (9), 4158-4163.
校內:2025-08-31公開