| 研究生: |
劉勝文 Liu, Sheng-Wen |
|---|---|
| 論文名稱: |
真空陰極電弧誘發脈衝電漿推進器之研發 The Development of Vacuum Arc Cathode Induced Pulsed Plasma Thruster |
| 指導教授: |
李約亨
Li, Yueh-Heng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程國際碩博士學位學程 International Master/Doctoral Degree Program on Energy Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 微衛星 、立方衛星 、電力推進系統 、脈衝式電漿推進器 、真空陰極電弧推進器 、真空陰極電弧誘發脈衝式電漿推進器 |
| 外文關鍵詞: | micro-satellite, CubeSat, electric propulsion system, pulsed plasma thruster, vacuum cathode arc thruster, vacuum-cathode-arc-initiated pulsed plasma thruster |
| 相關次數: | 點閱:115 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於電漿技術的快速發展,各種電力推進裝置應運而生,以滿足不同任務微衛星的需求。其中,脈衝式電漿推進器 (PPT) 在當今蓬勃發展的太空工業中獲得廣泛地應用,但碳沉積(阻礙其放電)的機制與問題相對未得深入探討,也幾乎沒有得到有效的解決方案。本文研究兩種電力推進系統—真空陰極電弧推進器(VCAT 或 VAT)和 PPT,取其優點進而提出創新的組合。本研究的重點是如何利用這兩種推進器的優勢並將它們用於 3U 或更小的立方衛星。所有特性和參數都進行了分類和量化,以確定新的組合—真空陰極電弧誘發脈衝式電漿推進器(簡稱VAI-PPT),並將當前的設計進行優化。研究證實VCAT可以替代原本PPT的點火器,縮小推進器的總體積。此外,鐵氟龍 (PTFE) 可視為取代絕緣層之介電材料同時又可作為推進劑取代石墨層。另一個重要發現是推進器的效率在很大程度上是取決於電源系統的電容。根據多種可靠的診斷系統,本研究所提出的 VAI-PPT 可以完成 1500 ~ 3000 秒的比衝範圍。在輸入能量為20 J的情況下, impulse bit理論上可達到760 μNs,這將會是作為太空探索立方衛星的推進系統之高潛力選擇。
Thanks to the fast development of plasma technology, various electric propulsions have been prevailing to satisfy the needs of micro-satellites with multitasks. Nowadays, the pulsed plasma thruster (PPT) has been extensively implemented in the prosperous space industries. However, the problem of carbon deposition (that hinders its discharge) is relatively unexplored and barely solved. This study proposes an innovative combination of the two electric propulsions, the vacuum cathode arc thruster (VCAT or VAT) and the PPT, respectively. The study focuses on how to capitalize on the benefits of these two thrusters and employ them in 3U or smaller CubeSats. All characteristics and parameters are categorized and quantified in order to ascertain the new association, that is, vacuum-cathode-arc-initiated pulsed plasma thruster (VAI-PPT in abbreviation). In addition, this study also conducts an optimization of the current design. It proves that VCAT can substitute the spark plug of an original PPT and minify the total bulk volume of the thruster. Moreover, Teflon (PTFE) can be regarded as a dielectric material that replaces the insulating layer, and at the same time, it can be used as a propellant to replace the graphite layer. Another important finding is that the efficiency of the thruster is highly pertinent to the capacitance of the power circuit. With several reliable diagnostic systems, the VAI-PPT can accomplish a range of specific impulse ranging 1500 ~ 3000 seconds. Under the circumstances of 20 J of power input, the impulse bit reaches 760 μNs theoretically, which would be a promising candidate of the thruster systems for CubeSats with outer space explorations in the near future.
[1] Dillon O’Reilly GH, Darren F. Kavanagh. Electric Propulsion Methods for Small Satellites: A Review. Aerospace. 2021.
[2] You Z. Space Microsystems and Micro/Nano Satellites2017.
[3] Wikipedia, List of orbits.
[4] NASA. 4.0 In-space propulsion.
[5] Nanosats database.
[6] Millan RM, von Steiger R, Ariel M, Bartalev S, Borgeaud M, Campagnola S, et al. Small satellites for space science. Advances in Space Research. 2019;64:1466-517.
[7] Mike Meyer C-c, Les Johnson C-c, Palaszewski B, Goebel D, White H, Coote D. Review: In-Space Propulsion on Systems Roadmap TechnologyNovember 2010.
[8] Akshay Reddy Tummala AD. An Overview of Cube-Satellite Propulsion Technologies and Trends. Aerospace. 2017;4.
[9] 潘均祐. 真空陰極電弧推進器之研發、設計與測試 January 2019.
[10] Sankaran K, Cassady L, Kodys AD, Choueiri EY. A survey of propulsion options for cargo and piloted missions to Mars. Ann N Y Acad Sci. 2004/06/29 ed2004. p. 450-67.
[11] Iain D. Boyd MK, WilliamMcKeon. Modeling of a Pulsed Plasma Thruster from Plasma Generation to Plume Far Field. JOURNAL OF SPACECRAFT AND ROCKETS. May–June 2000.
[12] K. Kubota IF, Y. Okuno. Numerical Study on Electrode Model for Plasma Simulation of MPD Thruster. The 32nd International Electric Propulsion ConferenceSeptember 2011.
[13] Turner MJL. Rocket and Spacecraft Propulsion2009.
[14] Tacon C. Electron Cyclotron Resonance Gridded Ion Thruster Optic Development November 2019.
[15] Pieter Cools NDGaRM. PLA Enhanced via Plasma Technology: A Review. New Developments in Polylactic Acid Research. December 2014.
[16] Galit Levitin KR, Dennis W Hess. Plasma Cleaning for Electronic, Photon, Biological, and Archeological Applications. November 2012.
[17] Arumugam S, Alex P, Sinha SK. Feedback model of secondary electron emission in DC gas discharge plasmas. Plasma Science and Technology. 2018;20.
[18] W. GUMAN TW. Pulsed plasma microthruster for synchronous meteorological satellite/SMS/. AIAA. 1974.
[19] W. EBERT SKaRS. Operational nova spacecraft Teflon pulsed plasma thruster system. AIAA.
[20] Roger Myers SRO, Melissa L McGuire, R. Joseph Cassady, Nicole J Meckel. Pulsed Plasma Thruster Technology for Small Satellite Missions. November 1995.
[21] Burton RL, Turchi PJ. Pulsed Plasma Thruster. Journal of Propulsion and Power. 1998;14:716-35.
[22] Taiwo R. TEJUMOLA AT, Arifur KHAN, HORYU-IV Project Team and Mengu CHO. Development of Low Cost Double Probe Plasma Measurement System for a Lean Satellite HORYU-IV. The Japan Society for Aeronautical and Space Sciences and ISTSJune 2016.
[23] Vondra RJ, Thomassen KI. Performance Improvements in Solid Fuel Microthrusters. Journal of Spacecraft and Rockets. 1972;9:738-42.
[24] Jahn RG. Physics of Electric Propulsion2006.
[25] Christopher D. Rayburn MEC, and A. Thomas Mattick. Pulsed Plasma Thruster System for Microsatellites. JOURNAL OF SPACECRAFT AND ROCKETS. January February 2005.
[26] Guman WJ. Pulsed Plasma Technology in Microthrusters. AIAA. Nov. 1968.
[27] James E. Polk MJS, John K. Ziemer, Jochen Schein, Niansheng Qi, and André Anders. A Theoretical Analysis of Vacuum Arc Thruster and Vacuum Arc Ion Thruster Performance. IEEE TRANSACTIONS ON PLASMA SCIENCE. OCTOBER 2008.
[28] Tianping Zhang LC, Xinyue Hu, RunlongWang, Huijie Zhang X, Xinfeng Sun, Ning Hu. Space-charge-limited current of vacuum arc thruster. plasma physics. December 2019.
[29] Jonathan Kolbeck MK, André Anders. Micropropulsion Based on Vacuum Arc Physics and Technology: A Review. The following manuscript was published at the 52nd AIAA/SAE/ASEE Joint Propulsion Conference Propulsion and Energy ForumJuly 25-27, 2016.
[30] JUTTN B. Erosion Craters and Arc Cathode Spots in Vacuum. h’oveinber 21,1978.
[31] Lev D. Investigation of Efficiency in Applied Field MagnetoPlasmaDynamic Thrusters January 2012.
[32] Tiankun Huang ZW, Xiangyang Liu, Kan Xie, Ningfei Wang, and Yue Cheng. Study of breakdown in an ablative pulsed plasma thruster. Physics of Plasmas. 2015.
[33] Michaelson HB. The work function of the elements and its periodicity. Journal of Applied Physics. 1977.
[34] HAŁAS S. 100 years of work function. Materials Science. 2006.
[35] Saiz GGa. Plasma Diagnostics with Langmuir Probe: Fabrication, Theory, and Application 2016.
[36] Subir Biswas SC, Yaswanth Palivela, and Rabindranath Pal. Effect of fast drifting electrons on electron temperature measurement with a triple Langmuir probe. Journal of Applied Physics. August 2015.
[37] J K Ziemer EYC. Scaling laws for electromagnetic pulsed plasma thrusters. PLASMA SOURCES SCIENCE AND TECHNOLOGY. June 2001.
[38] Miwa IGARASHI NK, Kensuke SATO, Kouji TAMURA and Haruki TAKEGAHARA. Performance Improvement of Pulsed Plasma Thruste for Micro Satellite. IEPCNovember 2001.
[39] Michael Keidar IDB, Erik L. Antonsen, Frank S. Gulczinski IIIand Gregory G. Spanjers. Propellant Charring in Pulsed Plasma Thrusters. JOURNAL OF PROPULSION AND POWER. December 2004.
[40] M. Lau GH. Pulsed Plasma Thruster Endurance Operation Stress Testing at IRS. USA October 2015: The George Washington University, Washington, D.C.