研究生: |
賴暐婷 Lai, Wei-Ting |
---|---|
論文名稱: |
變分貝式結構選擇方法 Variational Bayesian Approaches for Structure Selection |
指導教授: |
陳瑞彬
Chen, Ray-Bing |
學位類別: |
博士 Doctor |
系所名稱: |
管理學院 - 統計學系 Department of Statistics |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 英文 |
論文頁數: | 61 |
中文關鍵詞: | 變分貝式推論 、馬可夫鏈蒙地卡羅演算法 、動態網路 |
外文關鍵詞: | Variational Bayesian inference, MCMC algortihm, Dynamic network |
相關次數: | 點閱:78 下載:6 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文中,我們針對 3 種不同的模型分別為: 混合線性迴歸模型、網路自迴歸/向量
自迴歸模型 (NAR/VAR) 和 NAR-DeGARCH 模型提出變分貝式 (VB) 結構選擇方法。
VB 方法主要嘗試直接獲得最佳的近似後驗分配並且自動辨識給定模型的動態結構。
相較於爾可夫鏈蒙特卡羅(MCMC)的抽樣選擇方法 VB 方法可以通過犧牲少量的
估計精準度來達到更高的計算效率。在此論文中,不同模型的模擬設置來展示所提
出 VB 方法的性能。此外我們還通過兩個實際資料來顯示模型的效率。
In this paper, we develop variational Bayesian (VB) methods for structure selection problems in respect to three different models: the mixture linear regression model, the network autoregressive (NAR) model, and the NAR-DeGARCH model. Basically, the VB method attempts to directly obtain the best approximation of the posterior density, which can be used to automatically identify the dynamic structures for a given model. Compared with Markov chain Monte Carlo (MCMC)-based sampling selection methods, the VB method achieves a higher computational efficiency by sacrificing a small amount of estimation accuracy. In this thesis, simulations with different model setups are used to demonstrate the performance of the proposed VB methods. In addition, we offer illustrations of the model's efficiency with two real examples.
References
Bańbura, M., Giannone, D., & Reichlin, L. (2010). Large bayesian vector auto regressions. Journal of applied Econometrics, 25(1), 71–92.
Barbieri, J. O., M M & Berger. (2004). Optimal predictive model selection. The Annals of Statistics, 32, 870–897.
Beattie, S. D., Fong, D. K. H., & Lin, D. K. J. (2002). A two-stage bayesian model selection strategy for supersaturated designs. Technometrics, 44(1), 55–63.
Cai, M., Dai, M., Ming, J., Peng, H., Liu, J., & Yang, C. (2020). Bivas: a scalable Bayesian method for bi-level variable selection with applications. Journal of Computational and Graphical Statistics, 29(1), 40–52.
Carbonetto, P., & Stephens, M. (2012). Scalable variational inference for Bayesian variable selection in regression, and its accuracy in genetic association studies. Bayesian Analysis, 7, 73–108.
Chen, R.-B., Chu, C.-H., Lai, T.-Y., & Wu, Y. N. (2011). Stochastic matching pursuit for bayesian variable selection. Statistics and Computing, 21, 247–259.
Chen, R.-B., Chu, C.-H., Yuan, S., & Wu, Y. N. (2016). Bayesian sparse group selection. Journal of Computational and Graphical Statistics, 25, 665–683.
Chen, R.-B., Weng, J.-Z., & Chu, C.-H. (2013). Screening procedure for supersaturated designs using a bayesian variable selection method. Quality and Reliability Engineering International, 29(1), 89–101.
Chu, C.-H., Lo Huang, M.-N., Huang, S.-F., & Chen, R.-B. (2019). Bayesian structure selection for vector autoregression model. Journal of Forecasting, 38, 422–439.
Farcomeni, A. (2010). Bayesian constrained variable selection. Statistica Sinica, 20, 1043–1062.
Févotte, C., & Godsill, S. J. (2006). Sparse linear regression in unions of bases via bayesian variable selection. IEEE Signal Processing Letters, 13(7), 441–444.
Févotte, C., Godsill, S. J., & Wolfe, P. J. (2004). Bayesian approach for blind separation of underdetermined mixtures of sparse sources. In International conference on independent component analysis and signal separation (pp. 398–405).
George, E. I., & McCulloch, R. E. (1993). Variable selection via gibbs sampling. Journal of the American Statistical Association, 88, 881–889.
Geweke, J. (1996). Variable selection and model comparison in regression. In Bayesian Statistics, 5, 609–-620.
Huang, D., Zhu, X., Li, R., & Wang, H. (2021). Feature screening for network autoregression model. Statistica Sinica.
Huang, S.-F., Chiang, H.-H., & Lin, Y.-J. (2021). A network autoregressive model with garch effects and its applications. Plos one, 16(7), e0255422.
Khalili, A., & Chen, J. (2007). Variable selection in finite mixture of regression models. Journal of the american Statistical association, 102(479), 1025–1038.
Lee, K. E., Sha, N., Dougherty, E. R., Vannucci, M., & Mallick, B. K. (2003). Gene selection: a bayesian variable selection approach. Bioinformatics, 19(1), 90–97.
Lee, K.-J., Chen, R.-B., & Wu, Y. N. (2016). Bayesian variable selection for finite mixture model of linear regressions. Computational Statistics & Data Analysis, 95, 1–16.
Lütkepohl, H. (2007). General-to-specific or specific-to-general modelling? an opinion on current econometric terminology. Journal of Econometrics, 136(1), 319–324.
Ormerod, J. T., You, C., Müller, S., et al. (2017). A variational Bayes approach to variable selection. Electronic Journal of Statistics, 11(2), 3549–3594.
Simon, N., Friedman, J., Hastie, T., & Tibshirani, R. (2013). A sparse-group LASSO. Journal of Computational and Graphical Statistics, 22, 231–245.
Song, S., & Bickel, P. J. (2011). Large vector auto regressions. arXiv preprint arXiv:1106.3915.
Städler, N., Bühlmann, P., & Van De Geer, S. (2010). ℓ1-penalization for mixture regression models. Test, 19(2), 209–256.
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267–288.
Titsias, M. K., & Lázaro-Gredilla, M. (2011). Spike and slab variational inference for multitask and multiple kernel learning. Advances in Neural Information Processing Systems, 24, 2339-2347.
Yuan, M., & Lin, Y. (2006). Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68, 49–67.
Zhang, C.-X., Xu, S., & Zhang, J.-S. (2019). A novel variational Bayesian method for variable selection in logistic regression models. Computational Statistics & Data Analysis, 133, 1–19.
Zhu, X., & Pan, R. (2020). Grouped network vector autoregression. Statistica Sinca, 30, 1437–1462.
Zhu, X., Pan, R., Li, G., Liu, Y., & Wang, H. (2017). Network vector autoregression. The Annals of Statistics, 45(3), 1096–1123.