簡易檢索 / 詳目顯示

研究生: 蔡淳顗
Tsai, Chuen-Yi
論文名稱: 利用濁水溪河口沉積物中鈾釷系同位素示蹤其過去環境變化與地球化學過程
Tracing the past environmental change and geochemical process in Choshui River estuarine sediments with U-and Th-series radioisotopes
指導教授: 羅尚德
Luo, Shang-De
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2016
畢業學年度: 105
語文別: 英文
論文頁數: 60
中文關鍵詞: 自生相和碎屑相鈾系不平衡河口與懸浮沉積物風化作用和氧化還原環境濁水溪
外文關鍵詞: Authigenic and detrital phase, U-series disequilibrium, Estuarine and suspended sediment, Weathering, Redox environment, Choshui River
相關次數: 點閱:109下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 河口是大陸物質通過河流運輸到海洋的主要途徑,存在著許多複雜的生物地球化學過程,而沉積物記錄著沉積環境的變化,我們能利用沉積物中的鈾釷系同位素活度及其比值來研究大陸風化及沉積環境的地球化學過程。本實驗樣品有長江口沉積物以及採集自濁水溪河口的沉積物岩心(JRD-N,JRD-S),也採集2004年敏督利颱風期間的濁水溪懸浮沉積物,採用前人的方法以6N 鹽酸分相實驗將沉積物進一步分離為自生相和碎屑相。在經過化學純化程序後,利用α能譜儀測量沉積物自生相和碎屑相中的鈾釷系列放射性同位素如238U、234U、232Th、230Th、228Th和210Pb。測量其放射性活度及活度比值,藉由其放射性不平衡的關係來探討濁水溪的過去環境變化和地球化學過程。
    放射性活度在河流上下游沉積物有著明顯差異,下游的沉積物放射性活度低於上游的沉積物,對照著6N鹽酸分相後的碎屑相殘餘率,推斷下游部分含有較多放射性活度低的石英,在颱風期間的沖刷使得帶有大量石英的砂進入濁水溪下游,造成濁水溪沉積物放射性活度的稀釋效應,懸浮沉積物的放射性活度及其比值的變化主要受水動力影響。
    利用碎屑相和自生相中的鈾和釷系列不平衡的分佈關係,提供了解風化過程和氧化還原環境的有用指標,並且不同於前人使用全溶法作分析,其結果代表整體趨勢分佈無法有效得知各來源之貢獻及影響。
    232Th來自於陸源物質提供,從232Th在自生相與碎屑相中的比例可以看出化學風化的程度,當自生相所佔的比例越大的時候說明化學風化越加強烈,從放射性活度結果得知長江口大於濁水溪,而南側又大於北側;藉由物理風化會造成234U/238U比值在兩相間有不同趨勢,結合14C定年結果得知,物理風化強度在樣品在冰期時大於間冰期,冰期時氣候以乾冷為主以物理風化主導與放射性活度比值結果一致。
    228Th/232Th和210Pb/230Th的比值主要受228Ra與226Ra在氧化還原環境的富集與損失所影響,由於228Ra與226Ra的半衰期時間長短差異能夠指示不同時間尺度的氧化還原環境。228Th/232Th指示短時間尺度的氧化還原環境,可能在近幾十年受地下水遷移影響,放射性活度比值結果說明濁水溪北側比南側氧化,而長江河口沉積環境則較為還原。210Pb/230Th的不平衡是226Ra, 222Rn以及雨水造成的過剩210Pb,濁水溪河口沉積物自生相中210Pb/230Th的比值較大,其中Rn屬於氣體不易再度富集,而雨水造成的過剩210Pb則因為由河口沉積物的定年結果看出,沉積年代久遠使得過剩的210Pb會衰變而不造成貢獻,所以其比值結果可看出沉積環境較為氧化有Ra的富集,造成自生相比值的增加,長江河口則相反,較為還原造成Ra的損失而比值下降。總結來說濁水河口沉積物的分析結果以物理風化主導且處於氧化條件,長江口則是化學風化主導的還原環境。

    Estuaries are a major pathway of continental material transport through rivers to the oceans and lots of biogeochemical reactions occurred in these regions. The sediment records of a fluvial system are expected to bear signals of the changing sedimentary environments. The sample contains Yangtze River estuarine sediments and the sediment cores (JRD-N, JRD-S) collected from the Choshui River estuary, and collected the suspended sediment from typhoon induced continental weathering and erosions. Sediments sampled were further separated into authigenic and detrital phase with 6N HCl leaching experiment. Investigate the naturally-occurring uranium-series radioisotope e.g. those of uranium (238U and 234U), thorium (232Th, 230Th and 228Th), and lead (210Pb via 210Po) in the authigenic and detrital phase respectively with alpha-counting techniques following radiochemical purification procedures. Measurement of radioactivities and activity ratios in the detrital and authigenic phases of sediments to understand the past environmental change and geochemical process.
    The activities in downstream are generally lower than these in upstream, and there are high negative correlation between activities and sediment flux. The results indicated that more sand be washed into the river in Typhoon Mindulle event, the numerous of silt were inserted to Choshui River with severe dilution effect. The change of radioactivities mainly caused by hydrodynamic.
    The disibution patterns and disequilibrium relationships of uranium- and thorium-series disequilibrium in the detrital and authigenic phases provide the useful tool to understand weathering process and redox condition, and more valuable than based on total sediments.
    232Th is a good proxy for lithogenic particles. The stronger continental chemical weathering could raise the thorium activities in authigenic phase. The chemical weathering intensity in Yangtze River was greater than in the southern Choshui River estuary and greater than in the northern Choshui River estuary. Highly physical weathering may trigger the fractionation between 234U and 238U, the physical weathering intensity in the glacial period was greater than in the interglacial period.
    228Th/232Th and 210Pb/230Th ratios as a tracer to reconstruct the past changes of redox conditions. From the cored results, Yangtze River sediments deposited under anoxic conditions and Choshui River estuary was under oxygenated conditions.
    In conclusion, water-sediment interaction in recent years, physical weathering dominated and under oxidizing condition in Choshui River estuarine sediments. The chemical weathering is the dominant mechanism in Yangtze River and sediments deposited under anoxic conditions.

    摘要 I Abstract III Acknowledgements V Contents VI List of Figures VIII List of Tables X 1.Introduction 1 1.1.Uranium- and thorium-decay series 1 1.2.U- and Th-series disequilibrium in nature sediments 3 1.3.Definition of authigenic and detrital phases 6 1.4.Choshui River estuary 8 2.Material and Methods 10 2.1.Sampling sites 10 2.2.Chemical procedures 13 2.3.Instrumental analysis 15 3.Results 17 3.1.Activities of 210Pb 18 3.2.Activities of uranium isotopes 19 3.3.Activities of thorium isotopes 20 3.4.Activities ratios of U- and Th-isotopes 21 4.Discussions 30 4.1.Accessory minerals of granite 30 4.2.Radioactivity versus erosion intensity with organic particle dilution effect 34 4.3.232Th in authigenic phase and 238U/232Th versus 230Th/232Th as indicators of rock weathering intensity 37 4.4.230Th/238U and 234U/238U: insight into the weathering processes 41 4.5.228Th/232Th: tracer of recent changes in redox conditions 45 4.6.210Pb/230Th disequilibrium associated with paleo-redox changes 48 5.Conclusions 50 6.Reference 52 7.Appendix 57

    Andersen, M. B., Erel, Y., & Bourdon, B. (2009). Experimental evidence for 234U–238U fractionation during granite weathering with implications for 234 U/238 U in natural waters. Geochimica et Cosmochimica Acta, 73(14), 4124-4141.
    Anderson, R., LeHuray, A., Fleisher, M., & Murray, J. (1989). Uranium deposition in Saanich Inlet sediments, Vancouver Island. Geochimica et Cosmochimica Acta, 53(9), 2205-2213.
    Bateman, H. (1910). The solution of a system of differential equations occurring in the theory of radioactive transformations. Paper presented at the Proc. Cambridge Philos. Soc.
    Bourdon, B., Turner, S., Henderson, G. M., & Lundstrom, C. C. (2003). Introduction to U-series geochemistry. Reviews in Mineralogy and Geochemistry, 52(1), 1-21.
    Brunskill, G. J., Zagorskis, I., & Pfitzner, J. (2003). Geochemical mass balance for lithium, boron, and strontium in the Gulf of Papua, Papua New Guinea (Project TROPICS). Geochimica et Cosmochimica Acta, 67(18), 3365-3383.
    Carl, C. (1987). Investigations of U series disequilibria as a means to study the transport mechanism of uranium in sandstone samples during weathering.
    Chabaux, F., Riotte, J., & Dequincey, O. (2003). U-Th-Ra fractionation during weathering and river transport. Reviews in Mineralogy and Geochemistry, 52(1), 533-576.
    Chen, W.-P., & Lee, C.-H. (2003). Estimating ground-water recharge from streamflow records. Environmental Geology, 44(3), 257-265.
    Chu, W. L. (2010). Uranium-series radioisotopes as a tracer to understand the continental weathering and marginal-sea geochemical process. master's thesis. National Cheng Kung University, 11-20.
    Chung, Y., & Chang, W. (1996). Uranium and thorium isotopes in marine sediments off northeastern Taiwan. Marine Geology, 133(1), 89-102.
    Coffey, M., Dehairs, F., Collette, O., Luther, G., Church, T., & Jickells, T. (1997). The behaviour of dissolved barium in estuaries. Estuarine, Coastal and Shelf Science, 45(1), 113-121.
    Colbert, D., & McManus, J. (2005). Importance of seasonal variability and coastal processes on estuarine manganese and barium cycling in a Pacific Northwest estuary. Continental Shelf Research, 25(11), 1395-1414.
    Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M.-L., Willett, S. D., et al. (2003). Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426(6967), 648-651.
    Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Lin, J.-C., Hsu, M.-L., et al. (2004). Earthquake-triggered increase in sediment delivery from an active mountain belt. Geology, 32(8), 733-736.
    de Souza, V. L., Rodrigues, K. R., Pedroza, E. H., Melo, R. T. d., Lima, V. L. d., Hazin, C. A., et al. (2012). Sedimentation Rate and 210Pb Sediment Dating at Apipucos Reservoir, Recife, Brazil. Sustainability, 4(10), 2419-2429.
    DePaolo, D. J., Maher, K., Christensen, J. N., & McManus, J. (2006). Sediment transport time measured with U-series isotopes: results from ODP North Atlantic drift site 984. Earth and Planetary Science Letters, 248(1), 394-410.
    Dosseto, A., Bourdon, B., & Turner, S. P. (2008). Uranium-series isotopes in river materials: insights into the timescales of erosion and sediment transport. Earth and Planetary Science Letters, 265(1), 1-17.
    Ekström, L. P., & Firestone, R. B. (2004). WWW Table of Radioactive Isotopes. Database version 2.1. URL http://ie.lbl.gov/toi/.
    Gaillardet, J., Dupré, B., Louvat, P., & Allegre, C. (1999). Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 159(1), 3-30.
    Galewsky, J., Stark, C., Dadson, S., Wu, C. C., Sobel, A., & Horng, M. J. (2006). Tropical cyclone triggering of sediment discharge in Taiwan. Journal of Geophysical Research: Earth Surface, 111(F3).
    Goldsmith, S. T., Carey, A. E., Lyons, W. B., Kao, S.-J., Lee, T.-Y., & Chen, J. (2008). Extreme storm events, landscape denudation, and carbon sequestration: Typhoon Mindulle, Choshui River, Taiwan. Geology, 36(6), 483-486.
    Handley, H. K., Turner, S. P., Dosseto, A., Haberlah, D., & Afonso, J. C. (2013). Considerations for U-series dating of sediments: Insights from the Flinders Ranges, South Australia. Chemical Geology, 340, 40-48.
    Hashimoto, T., Aoyagi, Y., Kudo, H., & Sotobayashi, T. (1985). Range calculation of alpha-recoil atoms in some minerals using LSS-theory. Journal of Radioanalytical and Nuclear Chemistry, 90(2), 415-438.
    Herczeg, A. L., Simpson, H. J., Anderson, R. F., Trier, R. M., Mathieu, G. G., & Deck, B. L. (1988). Uranium and radium mobility in groundwaters and brines within the Delaware Basin, southeastern New Mexico, USA. Chemical Geology: Isotope Geoscience section, 72(2), 181-196.
    Ivanovich, M., & Harmon, R. S. (1992). Uranium-series disequilibrium: Applications to earth, marine, and environmental sciences: Oxford University Press.
    Kao, S. J., Chan, S. C., Kuo, C. H., & Liu, K. K. (2005). Transport‐Dominated Sediment Loading in Taiwanese Rivers: A Case Study from the Ma‐an Stream. The Journal of geology, 113(2), 217-225.
    Kigoshi, K. (1971). Alpha-recoil thorium-234: dissolution into water and the uranium-234/uranium-238 disequilibrium in nature. Science, 173(3991), 47-48.
    Li, Y.-H. (1976). Denudation of Taiwan island since the Pliocene epoch. Geology, 4(2), 105-107.
    Lin, Y.-L., Ensley, D. B., Chiao, S., & Huang, C.-Y. (2002). Orographic influences on rainfall and track deflection associated with the passage of a tropical cyclone. Monthly weather review, 130(12), 2929-2950.
    Luo, S., & Ku, T.-L. (1999). Oceanic 231Pa/230Th ratio influenced by particle composition and remineralization. Earth and Planetary Science Letters, 167(3), 183-195.
    Maher, K., DePaolo, D. J., & Christensen, J. N. (2006). U–Sr isotopic speedometer: fluid flow and chemical weathering rates in aquifers. Geochimica et Cosmochimica Acta, 70(17), 4417-4435.
    Megumi, K. (1979). Radioactive disequilibrium of uranium and actinium series nuclides in soil. Journal of Geophysical Research: Solid Earth, 84(B7), 3677-3682.
    Milliman, J., Lin, S., Kao, S., Liu, J., Liu, C., Chiu, J., et al. (2007). Short-term changes in seafloor character due to flood-derived hyperpycnal discharge: Typhoon Mindulle, Taiwan, July 2004. Geology, 35(9), 779-782.
    Milliman, J. D., & Kao, S. J. (2005). Hyperpycnal discharge of fluvial sediment to the ocean: Impact of Super‐Typhoon Herb (1996) on Taiwanese rivers. The Journal of geology, 113(5), 503-516.
    Milliman, J. D., & Meade, R. H. (1983). World-wide delivery of river sediment to the oceans. The Journal of geology, 1-21.
    Milliman, J. D., & Syvitski, J. P. (1992). Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. The Journal of geology, 525-544.
    Moore, W. S. (1999). The subterranean estuary: a reaction zone of ground water and sea water. Marine Chemistry, 65(1), 111-125.
    Moore, W. S., & Reid, D. F. (1973). Extraction of radium from natural waters using manganese‐impregnated acrylic fibers. Journal of Geophysical Research, 78(36), 8880-8886.
    Moreira-Nordemann, L. M. (1980). Use of 234 U/238 U disequilibrium in measuring chemical weathering rate of rocks. Geochimica et Cosmochimica Acta, 44(1), 103-108.
    Osmond, J., & Ivanovich, M. (1992). Uranium-series mobilization and surface hydrology Uranium-series disequilibrium: applications to earth, marine, and environmental sciences. 2. ed.
    Pliler, R., & Adams, J. (1962). The distribution of thorium and uranium in a Pennsylvanian weathering profile. Geochimica et Cosmochimica Acta, 26(11), 1137-1146.
    Reyes, E., & Marques, L. S. (2008). Uranium series disequilibria in ground waters from a fractured bedrock aquifer (Morungaba Granitoids—Southern Brazil): Implications to the hydrochemical behavior of dissolved U and Ra. Applied Radiation and Isotopes, 66(10), 1531-1542.
    Robinson, L. F., Henderson, G. M., Hall, L., & Matthews, I. (2004). Climatic control of riverine and seawater uranium-isotope ratios. Science, 305(5685), 851-854.
    Rosholt, J. (1982). Mobilization and weathering Uranium series disequilibrium: applications to environmental problems.
    Rosholt, J., Doe, B., & Tatsumoto, M. (1966). Evolution of the isotopic composition of uranium and thorium in soil profiles. Geological Society of America Bulletin, 77(9), 987-1004.
    Sakaguchi, A., Yamamoto, M., Sasaki, K., & Kashiwaya, K. (2006). Uranium and thorium isotope distribution in an offshore bottom sediment core of the Selenga Delta, Lake Baikal, Siberia. Journal of Paleolimnology, 35(4), 807-818.
    Sakaguchi, A., Yamamoto, M., Shimizu, T., & Koshimizu, S. (2005). Geochemical record of U and Th isotopes in bottom sediments of Lake Kawaguchi at the foot of Mt. Fuji, Central Japan. Journal of Radioanalytical and Nuclear Chemistry, 262(3), 617-628.
    Schott, B., & Wiegand, J. (2003). Processes of radionuclide enrichment in sediments and ground waters of Mont Vully (Canton Fribourg, Switzerland). Eclogae Geologicae Helvetiae, 96(1), 99-108.
    Stuckless, J., Bunker, C., Bush, C., Doering, W., & Scott, J. (1977). Geochemical and petrological studies of a uraniferous granite from the Granite Mountains, Wyoming. J. Res. US Geol. Surv, 5(1), 61-81.
    Swarzenski, P., Campbell, P., Porcelli, D., & McKee, B. (2004). The estuarine chemistry and isotope systematics of 234,238 U in the Amazon and Fly Rivers. Continental Shelf Research, 24(19), 2357-2372.
    Tsai, M. H. (2014). 利用珠江河口沉積物鈾釷同位素示蹤大陸風化過程及河口氧化還原環境之研究. 成功大學地球科學系學位論文, 1-70.
    Tsai, Y. J. (2007). 利用矽藻中鈾同位素比值探討台灣的風化歷史. 成功大學地球科學系學位論文, 1-53.
    Turkowsky, C. (1968). Electron-microscopic observation of artificially produced alpha-recoil tracks in albite. Earth and Planetary Science Letters, 5, 492-496.
    von Strandmann, P. A. P., Burton, K. W., James, R. H., van Calsteren, P., & Gislason, S. R. (2010). Assessing the role of climate on uranium and lithium isotope behaviour in rivers draining a basaltic terrain. Chemical Geology, 270(1), 227-239.
    von Strandmann, P. A. P., Burton, K. W., Porcelli, D., James, R. H., van Calsteren, P., & Gislason, S. R. (2011). Transport and exchange of U-series nuclides between suspended material, dissolved load and colloids in rivers draining basaltic terrains. Earth and Planetary Science Letters, 301(1), 125-136.
    von Strandmann, P. A. P., James, R. H., van Calsteren, P., Gíslason, S. R., & Burton, K. W. (2008). Lithium, magnesium and uranium isotope behaviour in the estuarine environment of basaltic islands. Earth and Planetary Science Letters, 274(3), 462-471.
    Wang, R.-M., & You, C.-F. (2013). Uranium and strontium isotopic evidence for strong submarine groundwater discharge in an estuary of a mountainous island: A case study in the Gaoping River Estuary, Southwestern Taiwan. Marine Chemistry, 157, 106-116.
    Wiegand, J. (2001). A guideline for the evaluation of the soil radon potential based on geogenic and anthropogenic parameters. Environmental Geology, 40(8), 949-963.
    Wu, C.-C., & Kuo, Y.-H. (1999). Typhoons affecting Taiwan: Current understanding and future challenges. Bulletin of the American Meteorological Society, 80(1), 67.
    Zhou, H.-y., Peng, X.-t., & Pan, J.-m. (2004). Distribution, source and enrichment of some chemical elements in sediments of the Pearl River Estuary, China. Continental Shelf Research, 24(16), 1857-1875.

    無法下載圖示 校內:2021-12-13公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE