簡易檢索 / 詳目顯示

研究生: 杜泰然
Du, Tai-Ran
論文名稱: 中空球狀矽酸鋰鐵之合成及其於鋰離子電池電極之應用
Synthesis of Hollow Li2FeSiO4 Sphere Applied for Lithium-Ion Battery Electrode
指導教授: 郭炳林
Kuo, Ping-Lin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 71
中文關鍵詞: 矽酸鋰鐵正極材料負極材料
外文關鍵詞: Li2FeSiO4, Cathode, Anode
相關次數: 點閱:111下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究先使用混摻高分子為模板,以水玻璃為矽源縮合出尺寸在500~800 nm之間的中空球狀氧化矽球(SiO2),將此中空球狀氧化矽球與鋰鹽及鐵鹽以水-醇混合溶劑均勻混合後,再以不同氣體氛圍經模板法製備中空球狀矽酸鋰鐵(Li2FeSiO4),並以樹脂批覆,經高溫碳化後製備出Li2FeSiO4/C正極複合材料,最後由TGA測量披覆碳與Li2FeSiO4的重量比例。
      在產物型態鑑定方面,由掃描式電子顯微鏡(SEM)及穿透式電子顯微鏡(TEM)觀察材料的外觀型態,證實在最佳條件下,反應後其形態仍可保持中空球狀;而由XRD可證明此中空球狀矽酸鋰鐵具有高純度。
    以鈕扣型電池進行Li2FeSiO4/C 複合電極材料循環充放電測試,應用於正極材料方面,披覆20 %碳的Li2FeSiO4/C系統,在0.05 C放電速率且充放電電壓範圍在1.5~4.7 V下,有接近理論電容的154 mAh g-1表現,並在持續充放電30圈後沒有衰竭,而在負極材料方面,在0.15 C充放電速率且電壓範圍在0.005~3 V下,可以有約800 mAh g-1的高電容,代表以此Li2FeSiO4/C 為電池正或負極進行充放電皆能有不錯之效能。

    A novel hollow Li2FeSiO4 sphere have been successfully prepared by using the hollow silica sphere as template, where the thickness of the nanoscale Li2FeSiO4 thin shell is about 50 nm. Then, the hollow Li2FeSiO4 sphere was coated by phenolic resin as carbon precursor to obtain the hollow Li2FeSiO4/Carbon sphere (HLFS/C) composite. The structure characterizations by transmission electron microscopy and scanning electron microscopy show that HLFS/C are hollow structure with high purity. When used as the cathode materials under charge/discharge rates at 0.05 C (1C=166 mAh g-1), the HLFS/C exhibited capacity of 155 mAh g−1 with good cycle ability. Moreover, for anode application, the HLFS exhibited capacity of 820, 650 and 420 mAh g-1 for 0.15C, 0.3 C and 0.6 C rates, respectively, with good cycle ability without any structural instability up to 50 cycles. The hollow structure of HLFS/C enables us to overcome aggregation and structural instability problem as well as essential for the improvement of the electrochemical performance.

    摘要 I Abstract II 目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 鋰離子電池簡介 2 1.3 正極材料 4 1.3.1鋰鈷氧化物(LiCoO2) 7 1.3.2 鋰鎳氧化物(LiNiO2) 8 1.3.3鋰錳氧化物(LiMn2O4) 8 1.3.4 磷酸鋰鐵(LiFePO4) 10 1.3.5 矽酸鋰鐵(Li2FeSiO4) 11 1.3.6 高電容量之有機硫磺系正極材料 12 1.4 負極材料 12 1.4.1 碳材負極材料 13 1.4.2 矽基負極材料 15 1.4.3 鋰鈦複合氧化物負極材料 16 第二章 基本理論 17 2.1 鋰離子電池之工作原理 17 2.2 Li2FeSiO4正極材料之介紹 18 2.2.1 Li2FeSiO4的晶格結構 19 2.2.2 Li2FeSiO4做為正極材料之文獻回顧 21 2.2.3 Li2FeSiO4做為負極材料之文獻回顧 23 2.3 Li2FeSiO4正極材料之合成方法 24 2.3.1 固態反應法 24 2.3.2 溶膠凝膠法 25 2.3.3 溶劑熱法 25 2.4 Li2FeSiO4正極材料改質技術 26 2.4.1 利用碳修飾改質 27 2.5 研究動機 29 第三章 實驗 31 3.1實驗藥品與材料 31 3.2樣品製備 32 3.2.1 中空球狀二氧化矽(Hollow Silica)之製備 32 3.2.2 HLFS披覆樹脂碳源複合正極材料之製備 33 3.3材料性質分析 33 3.3.1 X光繞射儀(XRD) 33 3.3.2 掃描式電子顯微鏡(SEM) 34 3.3.3 穿透式電子顯微鏡(TEM) 35 3.3.4 氮氣等溫吸附/脫附測量(BET) 35 3.3.5 顯微拉曼光譜儀(Raman) 36 3.4 電化學性質量測 37 3.4.1 正極極片之製作 37 3.4.2 鈕扣型電池組裝 38 3.4.3 充放電測試( C-rate Test) 38 3.4.4 循環伏安法( Cyclic Voltammetry) 39 第四章 結果與討論 41 4.1 矽酸鋰鐵XRD晶格探討 41 4.1.1 最佳分散溶劑之選取 41 4.1.2 最佳反應氣體之選取 42 4.1.3 最佳反應時間之選取 43 4.1.4 HLFS穿透式電子顯微鏡(TEM)觀察 45 4.1.5 HLFS比表面積(BET)測試 47 4.1.6 HLFS之IR分析 47 4.2 HLFS/C掃描式電子顯微鏡(SEM)與穿透視電子顯微鏡(TEM)觀察 48 4.2.1 HLFS/C熱重分析儀(TGA)測量 50 4.2.2 HLFS/C導電度探討 51 4.2.3 HLFS/C拉曼(Raman)光譜分析 52 4.3 HLFS/C當作正極材料鈕扣型電池充放電測試 54 4.3.1 HLFS/C不同碳源的鈕扣型電池充放電測試 54 4.3.2 循環伏安法(CV)電化學測試HLFS/C 56 4.4 HLFS/C當作負極材料鈕扣型電池充放電測試 61 第五章 結論 63 參考文獻 65

    1. Anton Nytén, Ali Abouimrane, Michel Armand, Torbjörn Gustafsson, John O. Thomas, Electrochemistry Communications 7 (2005) 156.
    2. Tarascon, J. –M.; Armand, M. Nature 2001, 414, 359.
    3. 林振華; 林振富, 充電式鋰離子電池, 2001.
    4. Kuczynski, G. C. Trans. Am. Inst. Min. (Metall.) Eng. 1949, 185, 169.
    5. Chung, S. Y.; Bloking, J. T.; Chiang, Y. M. Nat. Mater. 2002, 1, 123.
    6. Thackeray, M. Nat. Mater. 2002, 1, 81.
    7. Thackeray, M. J. Electrochem. Soc. 1995, 142, 2558.
    8. Shen, C. H.; Liu, R. S.; Gundakaram, R.; Chen, J. M.; Huang, S. M.; Chen, J. S.; Wang, C. M. J. Power Sources 2001, 102, 21.
    9. Wei, Y. J.; Yan, L. Y.; Wang, C. Z.; Xu, X. G.; Wu, F.; Chen, G.. J. Phys. Chem. B 2004, 108, 18547.
    10. Lu, C. H.; Lin, Y.; Wang, H. C. J. Mater. Sci. Lett. 2003, 22, 615.
    11. Capsoni, D.; Bini, M., Chiodelli, G.; Mustarelli, P.; Massarotti, V.; Azzoni, C. B.; Mozzati, M. C.; Linati, L. J. Phys. Chem. B 2002, 106, 7432.
    12. Sparks, T. D.; Gurlo, A.; Clarke, D. R. J. Mater. Chem. 2012, 22, 4631.
    13. Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144, 1188.
    14. N. Raver, Y. Chouinard, J. F. Magnan, S. Besner, M. Gauthier, M. Armand, J. Power Source. 97, 503(2001)
    15. A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, ECS Meeting Abstract, 58, Los Angeles, CA., May 5-10, 1996, vol. 96-1.
    16. N. Ravet, J.-F. Magnan, M. Gauthier and M. Armand, International Conference on Materials for Advanced Technologies (ICMAT 2001), MRS Singapore, July 1–6, 2001.
    17. M. Armand, M. Gauthier, J. F. Magnan and N. Ravet, PCT WO 02/27823 and WO 01/27824.
    18. M. Gauthier, D. Geoffroy, M. Armand and N. Ravet, The 20th International Seminar on Primary and Secondary Batteries, Florida Educational Seminar Inc., Boca Raton, Florida, USA, March 17–20, 2003, www.POWERSOURCES.NET, info@powersources.net or from the authors.
    19. C.-W. Wang, A. M. Sastry, K. A. Striebel, and K. Zaghib, J. Electrochem. Soc.,152, A1001 (2005).
    20. J. Kim, B. Kim, J.-G. Lee, J. Cho, and B. Park, J. Power Sources, 139, 289 (2005).
    21. S. Mandal, J. M. Amarilla, J. Ibanez, and J. M. Rojo, J.Electrochem. Soc., 148,A24 (2001).
    22. A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, J. Electrochem. Soc.,144, 1188 (1997).
    23. Chia-Chin Chang, Li-Jane Her, Huang-Kai Su, Sheng-Hsiang Hsu, and Yao Te Yen, Journal of The Electrochemical Society, 158 (5) A481 (2011)
    24. N. Meethong, Y. H. Kao, S. A. Speakman, Y. M. Chiang, Adv. Funct. Mater. 19, 1060 (2009)
    25. J. F. Ni, H. H. Zhou, J. T. Chen, X. X. Zhang, Mater. Lett., 59, 2361 (2005)
    26. X. Ou, G. Liang, L. Wang, S. Xu, X. Zhao, J. Power Sources,184, 543 (2008)
    27. H. Liu, C. Li, Q. Cao, Y. P. Wu and R. Holze, J Solid State Electrochem, 12, 1017 (2008)
    28. C.S. Sun, Z. Zhou, Z.G. Xu, D.G. Wang, J.P. Wei, X.K. Bian, J. Yan, J. Power Sources, 193, 841 (2009)
    29. M. Zhang, L. F. Jiao, H. T. Yuan, Y. M. Wang, J. Guo, M. Zhao, W. Wang, X. D. Zhou, Solid State Ionic, 177, 3309 (2006)
    30. J.B. Heo, S.B. Lee, S.H. Cho, J. Kim, S.H. Park, Y.S. Lee, Mater. Lett., 63, 581 (2009)
    31. P. Tang, N. A. W. Holzwarth, Phys. Rev. B, 68, 165107 (2003)
    32. Marmorstein D, Yu T H, Striebel K A, McLarnon F R, Hou J, Cairns E J, J. Power Sources, 2000, 89:219 .
    33. Petr N, Klaus M, Santhanam K S V, Otto H, Chem. Rev., 1997, 97:207.
    34. Kumaresan K, Mikhaylik Y, White R, J. Electrochem. Soc., 2008, 155:A576 .
    35. Mikhaylik Y V, Akridge J R, J. Electrochem. Soc., 2004, 151:A1969 .
    36. He X M, Ren J G, Wang L, Pu W H, Jiang C Y, Wan C R, J. Power Sources, 2009, 190:154 .
    37. Ebert, L. B. Annu. Rev. Mater. Sci. 1976, 6, 181.
    38. Besenhard, J. O. J. Power Sources 1976, 77, 267.
    39. Wertheim, G. K.; Van Attekum, P. M. Th. M.; Basu, S. Solid State Comm. 1980, 33, 1127.
    40. Nalimova, V. A.; Guérard, D.; Lelaurain, M.; Fateev, O. V. Carbon 1995, 2, 177.
    41. Jiang, J.; Dahn, J. R. Electrochim Acta 2004, 49, 4599.
    42. Xu, K. Chem. Rev. 2004, 104, 4303.
    43. Boukamp, B. A.; Lesh, G. C.; Huggins, R. A. J. Electrochem. Soc. 1981, 128, 725.
    44. Hwang, S. M.; Lee, H. Y.; Jang, S. M.; Lee, S. J.; Baik, H. K.; Lee, J. Y. Electrochem. Solid-State Lett. 2001, 4, A97.
    45. Robert, G. A.; Cairns, E. J.; Reimer, J. A. J. Power Sources 2002, 110, 424.
    46. Kim, I.; Blomgren, G. E.; Kumta, P. N. J. Power Sources 2004, 130, 275.
    47. Patel, P.; Kim, I.; Kumta, P. N. Mat. Sci. Eng. B-Solid 2005, 116, 347.
    48. Kim, I.; Kumta, P. N.; Blomgren, G. E. Electrochem. Solid-State Lett. 2000, 3, 493.
    49. Kim, I.; Blomgren, G. E.; Kumta, P. N. Electrochem. Solid-State Lett. 2003, 6, A157.
    50. Liu, W. R.; Wang, J. H.; Wu, H. C.; Shieh, D. T.; Yang, M. H,; Wu, N. L. J. Electrochem. Soc. 2005, 152, A1719.
    51. Xie, J.; Cao, G. S.; Zhao, X. B. Mater. Chem. Phys. 2004, 88, 295.
    52. Holzapfel, M.; Buqa, H.; Krumeich, F.; Novák, P.; Petrat, F. -M.; Veitc, C. Electrochem. Solid-State Lett. 2005, 8, A516.
    53. Yi, T. F.; Jiang, L. J.; Shu, J.; Yue, C. B.; Zhu, R. S.; Qiao, H. B. J. Phys. Chem. Solids 2010, 71, 1236.
    54. Song, J. Y.; Wang, Y. Y.; Wan, C. C. J. Power Sources 1999, 77, 183.
    55. 黃可龍; 王兆翔; 劉素琴, 鋰離子電池原理與技術, 2010.
    56. Anton Nytén, Ali Abouimrane, Michel Armand, Torbjörn Gustafsson, John O. Thomas, Electrochem Commun, 2005, 7: 156.
    57. Z. L. Gong, Y. X. Li, G. N. He, J. Li, and Y. Yang, Electrochemical and Solid-State Letters, 11 (5) A60 (2008)
    58. Arroyo-de Dompablo M E, Armand M, Tarascon J M, et al. On-demand design of polyoxianionic cathode materials based on electronegativity correlations: An exploration of the Li2MSiO4 system (M = Fe, Mn, Co, Ni). Electrochem Commun, 2006, 8: 1292.
    59. C. Sirisopanaporn, C. Masquelier, P. G. Bruce, A. R. Armstrong, and R. Dominko, J. Am. Chem. Soc., 133, 1263 (2011).
    60. N. Yabuuchi, Y. Yamakawa, K. Yoshii, and S. Komaba, Dalton Trans., 40, 1846 (2011).
    61. A. R. Armstrong, N. Kuganathan, M. S. Islam, and P. G. Bruce, J. Am. Chem. Soc., 133, 13031 (2011).
    62. S. Nishimura, S. Hayase, R. Kanno, M. Yashima, N. Nakayama, and A. Yamada, J. Am. Chem. Soc., 130, 13212 (2008).
    63. A. Boulineau, C. Sirisopanaporn, R. Dominko, A. R. Armstrong, P. G. Bruce, and C. Masquelier, Dalton Trans., 39, 6310 (2010).
    64. C. Sirisopanaporn, A. Boulineau, D. Hanzel, R. Dominko, B. Budic, A. R. Armstrong, P. G. Bruce, and C. Masquelier, Inorg. Chem., 49, 7446 (2010).
    65. P. Zhang, C. H. Hu, S. Q. Wu, Z. Z. Zhu and Y. Yang, Phys. Chem. Chem. Phys., 2012, 14, 7346.
    66. Dinesh Rangappa, Kempaiah Devaraju Murukanahally, Takaaki Tomai, Atsushi Unemoto, and Itaru Honma, Nano Lett. 2012, 12, 1146.
    67. Christian Dippel, Steffen Krueger, Richard Kloepsch, Philip Niehoff, Bjoern Hoffmann, Sascha Nowak, Stefano Passerini, Martin Winter, Jie Li, Electrochimica Acta 85 (2012) 66.
    68. Zhongxue Chen, Shen Qiu, Yuliang Cao, Jiangfeng Qian, Xinping Ai, Kai Xie,Xiaobin Hong and Hanxi Yang, J. Mater. Chem. A, 2013, 1,4988
    69. N. Kalaiselvi, C.H. Doh, C.W. Park, S.I. Moon, M.S. Yun, Electrochem. Commun.6 (2004) 1110.
    70. Yang Xu, Yajuan Li, Suqin Liu, Hongliang Li, Younian Liu, Journal of Power Sources 220 (2012) 103.
    71. Toprakci, O.; Toprakci, H. A. K.; Ji, L. W. ; Zhang, X. W. KONA Powder and Particle Journal 2010, 28, 50.
    72. Hench, L. L.; West, J. K. Chem. Rev. 1990, 90, 33.
    73. Arumugam, D.; Kalaignan, G. P.; Manisankar, P. J. Solid State Electrochem. 2009, 13,301.
    74. Yang, S.; Zavalij, P. Y.; Whittingham, M. S. Electrochem. Comm. 2001, 3,505.
    75. Yang, S.; Song, Y.; Zavalij, P. Y.; Whittingham, M. S. Electrochem. Comm. 2002, 4, 239.
    76. Delacourt, C.; Wurm, C.; Laffont, L.; Leriche, J. –B.; Masquelier, C. Solid State Ionics 2006, 177, 333.
    77. Murugan, A. V.; Muraliganth, T.; Manthiram, A. J. Phys. Chem. C 2008, 112, 14665.
    78. Sun, C.; Rajasekhara, S.; Goodenough, J. B.; Zhou, F. J. Am. Chem. Soc. 2011, 133, 2132.
    79. Meligrana, G.; Gerbaldi, C.; Tuel, A.; Bodoardo, S.; Penazzi, N. J. Power Sources 2006, 160, 516.
    80. Chang, Z. R.; Lv, H. J.; Tang, H. W.; Li, H. J.; Yuan, X. Z.; Wang, H. J. Electrochim. Acta 2009, 54, 4595.
    81. Yu, L. H.; Liu, Q. S.; Wang, H. H. Ionics 2009,15, 689.
    82. Jin, B.; Gu, H. B.; Zhang, W. X.; Park, K. H.; Sun, G. P. J. Solid State Electrochem. 2008, 12, 1549.
    83. Liang, G. C.; Wang, L.; Ou, X. Q.; Zhao, X.; Xu, S. Z.; J. Power Sources 2008, 184, 538.
    84. Hsu, K. F.; Tsay, S. Y.; Hwang, B. J. J. Mater. Chem. 2004, 14, 2690.
    85. Wang, Y. G.; Wang, Y. R.; Hosono, E.; Wang, K. X.; Zhou, H. S. Angew. Chem. Int. Ed. 2008, 47, 7461.
    86. Zhang, W. J. J. Power Sources 2011, 196, 2962.
    87. Li, H. Q.; Zhou, S. H. Chem. Comm. 2012, 48, 1201.
    88. Haitao Zhou, Mari-Ann Einarsrud, Fride Vullum-Bruer, Journal of Power Sources, 235 (2013) 234.

    無法下載圖示 校內:2019-08-04公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE