| 研究生: |
黃致鈞 Huang, Chih-Chun |
|---|---|
| 論文名稱: |
探討有樁式共享單車的租還不確定性及使用不對稱行為 Exploring the Availability Uncertainty and Asymmetric Commuting Behaviors of Station-Based Bike Sharing System |
| 指導教授: |
鄭永祥
Cheng, Yung-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 交通管理科學系 Department of Transportation and Communication Management Science |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 187 |
| 中文關鍵詞: | 站點式共享單車 、可用不確定性 、不對稱行為 、建成環境 、整合選擇與潛在變數模型 |
| 外文關鍵詞: | Station-based Bike Sharing System, Availability Uncertainty, Asymmetric Commute Behavior, Built Environment, ICLV model |
| 相關次數: | 點閱:39 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
共享單車系統(BSS)對於促進永續的都市微型運輸至關重要。然而,車輛或樁位短缺可能會阻礙使用者的使用意願。本研究調查影響台北市站點式共享單車系統(SBSS)使用者行為和心理因素,尤其針對捷運站轉乘接駁的第一/最後一哩路。通過採用以使用者為中心的研究視角,本研究不僅分析使用者在獲得預測資訊後的租借和歸還行為,還綜合考慮建成環境變數、實際使用數據,以及通過陳述偏好方法收集的問卷數據。
本研究採用多項羅吉特(MNL)模型和整合選擇與潛在變數(ICLV)模型,分析影響使用者行為的因素,包括可觀察的外部因素和無法直接測量的潛在心理因素。研究結果發現,可觀察因素和潛在心理因素都顯著影響使用者的選擇。值得注意的是,研究揭示第一/最後一哩路之間呈現非對稱行為,說明制定客製化策略的必要性。ICLV分析顯示,可用性不確定性及潛在心理因素,對不同使用者群體和通勤行為的影響各不相同。因此,研究建議SBSS運營商優先提供預測資訊以減少不確定性,並且考量不同的建成環境因素,從而更有效地滿足使用者需求。將這些分析及見解整合至BSS的設計和系統改善過程,運營商和政策制定者將能提高系統可靠度和使用者滿意度,最終建立更有效和永續的BSS,以補充公共交通並滿足用戶需求。
Bike-sharing systems (BSS) are vital for fostering sustainable urban micro-mobility. However, real-time bike or dock shortages can deter user engagement. This study investigates user behavior and psychological factors influencing decisions within Taipei City's station-based bike-sharing system (SBSS), particularly concerning first/last-mile connections to the MRT. By adopting a user-centric perspective, the research analyzes rental and return behaviors in response to predictive information, integrating built environment variables with real-time data and stated preference methods to generate predictive insights.
Employing multinomial logit (MNL) and integrated choice and latent variable (ICLV) models, the study provides a nuanced understanding of SBSS user experiences and decision-making processes. Findings indicate that both observable factors and latent psychological influences significantly affect user choices. Notably, the study uncovers asymmetric behaviors between first and last-mile journeys, underscoring the necessity for tailored strategies. ICLV analysis reveals that uncertainties regarding availability and psychological factors impact various user groups and commuting behaviors differently. Consequently, the study recommends that SBSS operators prioritize predictive information to alleviate uncertainty, thereby addressing user needs more effectively. By integrating these insights into BSS design and optimization, operators and policymakers can enhance system reliability and user satisfaction, ultimately creating more effective and sustainable BSS that complement public transit and fulfill user requirements.
Aaditya, B., & Rahul, T. (2021). Psychological impacts of COVID-19 pandemic on the mode choice behaviour: A hybrid choice modelling approach. Transport policy, 108, 47-58. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9759632/pdf/main.pdf
Aamaas, B., & Peters, G. P. (2017). The climate impact of Norwegians’ travel behavior. Travel Behaviour and Society, 6, 10-18.
Abou-Zeid, M., & Ben-Akiva, M. (2014). 17 Hybrid choice models. Handbook of choice modelling, 383.
Adnan, M., Altaf, S., Bellemans, T., Yasar, A.-u.-H., & Shakshuki, E. M. (2019). Last-mile travel and bicycle sharing system in small/medium sized cities: user’s preferences investigation using hybrid choice model. Journal of Ambient Intelligence and Humanized Computing, 10, 4721-4731.
Aghaabbasi, M., & Chalermpong, S. (2023). A meta-analytic review of the association between the built environment and integrated usage of rail transport and bike-sharing. Transportation research interdisciplinary perspectives, 21, 100860.
Ahmed, J., Robinson, A., & Miller, E. E. (2024). Effectiveness of signs for pedestrian-railroad crossings: Colors, shapes, and messaging strategies. Journal of Safety Research.
Almannaa, M. H., Elhenawy, M., & Rakha, H. A. (2020). Dynamic linear models to predict bike availability in a bike sharing system. International journal of sustainable transportation, 14(3), 232-242.
Amaris, G., Hess, S., Gironás, J., & de Dios Ortúzar, J. (2021). Using hybrid choice models to capture the impact of attitudes on residential greywater reuse preferences. Resources, Conservation and Recycling, 164, 105171.
Anaya-Boig, E., Douch, J., & Castro, A. (2021). The death and life of bike-sharing schemes in Spain: 2003–2018. Transportation research part A: policy and practice, 149, 227-236.
Andersson, A., Hiselius, L. W., & Adell, E. (2020). The effect of marketing messages on the motivation to reduce private car use in different segments. Transport policy, 90, 22-30.
Ansar, M. S., Alsaleh, N., & Farooq, B. (2023). Behavioural modelling of automated to manual control transition in conditionally automated driving. Transportation research part F: traffic psychology and behaviour, 94, 422-435.
Ashok, K., Dillon, W. R., & Yuan, S. (2002). Extending discrete choice models to incorporate attitudinal and other latent variables. Journal of marketing research, 39(1), 31-46.
Avineri, E., & Prashker, J. N. (2006). The impact of travel time information on travelers’ learning under uncertainty. Transportation, 33, 393-408.
Baek, K., Lee, H., Chung, J.-H., & Kim, J. (2021). Electric scooter sharing: How do people value it as a last-mile transportation mode? Transportation Research Part D: Transport and Environment, 90, 102642.
Bahamonde-Birke, F. J., Kunert, U., Link, H., & Ortúzar, J. d. D. (2017). About attitudes and perceptions: finding the proper way to consider latent variables in discrete choice models. Transportation, 44, 475-493.
Basheer, M. A., van der Waerden, P., Kochan, B., Bellemans, T., & Shah, S. A. R. (2019). Multi-stage trips: An exploration of factors affecting mode combination choice of travelers in England. Transport policy, 81, 95-105.
Beauvoir, V., & Moylan, E. (2020). Unreliability of delay caused by bike unavailability in bike share systems. Transportation research record, 2674(5), 444-451.
Ben-Akiva, M., Bradley, M., Morikawa, T., Benjamin, J., Novak, T., Oppewal, H., & Rao, V. (1994). Combining revealed and stated preferences data. Marketing letters, 5, 335-349.
Ben-Akiva, M., & Lerman, S. R. (2018). Discrete Choice Analysis: Theory and Application to Travel Demand. MIT Press.
Ben-Akiva, M., McFadden, D., Gärling, T., Gopinath, D., Walker, J., Bolduc, D., Börsch-Supan, A., Delquié, P., Larichev, O., & Morikawa, T. (1999). Extended framework for modeling choice behavior. Marketing letters, 10, 187-203.
Ben-Akiva, M., Walker, J., Bernardino, A. T., Gopinath, D. A., Morikawa, T., & Polydoropoulou, A. (2002). Integration of choice and latent variable models. Perpetual motion: Travel behaviour research opportunities and application challenges, 2002, 431-470.
Bhat, C. R. (2001). Quasi-random maximum simulated likelihood estimation of the mixed multinomial logit model. Transportation Research Part B: Methodological, 35(7), 677-693.
Bhat, C. R., & Dubey, S. K. (2014). A new estimation approach to integrate latent psychological constructs in choice modeling. Transportation Research Part B: Methodological, 67, 68-85.
Bhat, C. R., & Guo, J. Y. (2007). A comprehensive analysis of built environment characteristics on household residential choice and auto ownership levels. Transportation Research Part B: Methodological, 41(5), 506-526.
Bhat, C. R., & Sardesai, R. (2006). The impact of stop-making and travel time reliability on commute mode choice. Transportation Research Part B: Methodological, 40(9), 709-730.
Bi, H., Li, A., Hua, M., Zhu, H., & Ye, Z. (2022). Examining the varying influences of built environment on bike-sharing commuting: Empirical evidence from Shanghai. Transport policy, 129, 51-65.
Blais, A.-R., & Weber, E. U. (2006). A domain-specific risk-taking (DOSPERT) scale for adult populations. Judgment and Decision making, 1(1), 33-47.
Blitz, A. (2021). How does the individual perception of local conditions affect cycling? An analysis of the impact of built and non-built environment factors on cycling behaviour and attitudes in an urban setting. Travel Behaviour and Society, 25, 27-40.
Böcker, L., Anderson, E., Uteng, T. P., & Throndsen, T. (2020). Bike sharing use in conjunction to public transport: Exploring spatiotemporal, age and gender dimensions in Oslo, Norway. Transportation research part A: policy and practice, 138, 389-401.
Bolduc, D., Boucher, N., & Alvarez-Daziano, R. (2008). Hybrid choice modeling of new technologies for car choice in Canada. Transportation research record, 2082(1), 63-71.
Bonsall, P. (2001). Predicting travellers’ response to uncertainty. Travel Behaviour Research: the Leading Edge. Pergamon, Amsterdam.
Bottasso, A., Duchêne, S., Guerci, E., Hanaki, N., & Noussair, C. N. (2022). Higher order risk attitudes of financial experts. Journal of Behavioral and Experimental Finance, 34, 100658.
Brand, C., Dons, E., Anaya-Boig, E., Avila-Palencia, I., Clark, A., de Nazelle, A., Gascon, M., Gaupp-Berghausen, M., Gerike, R., & Götschi, T. (2021). The climate change mitigation effects of daily active travel in cities. Transportation Research Part D: Transport and Environment, 93, 102764.
Buhr, K., & Dugas, M. J. (2009). The role of fear of anxiety and intolerance of uncertainty in worry: An experimental manipulation. Behaviour research and therapy, 47(3), 215-223.
Bullock, C., Brereton, F., & Bailey, S. (2017). The economic contribution of public bike-share to the sustainability and efficient functioning of cities. Sustainable cities and society, 28, 76-87.
Burger, J. M., & Cooper, H. M. (1979). The desirability of control. Motivation and emotion, 3, 381-393.
Burger, J. M., & Hemans, L. T. (1988). Desire for control and the use of attribution processes. Journal of Personality, 56(3), 531-546.
Büttner, J., & Petersen, T. (2011). Optimising bike sharing in European cities-a handbook.
Caggiani, L., Camporeale, R., Ottomanelli, M., & Szeto, W. Y. (2018). A modeling framework for the dynamic management of free-floating bike-sharing systems. Transportation Research Part C: Emerging Technologies, 87, 159-182.
Caicedo, F. (2010). Real-time parking information management to reduce search time, vehicle displacement and emissions. Transportation Research Part D: Transport and Environment, 15(4), 228-234.
Campbell, K. B., & Brakewood, C. (2017). Sharing riders: How bikesharing impacts bus ridership in New York City. Transportation research part A: policy and practice, 100, 264-282.
Carleton, R. N., Norton, M. P. J., & Asmundson, G. J. (2007). Fearing the unknown: A short version of the Intolerance of Uncertainty Scale. Journal of anxiety disorders, 21(1), 105-117.
Carlos Alvarez de la Vega, J., E. Cecchinato, M., & Rooksby, J. (2021). “Why lose control?” A study of freelancers’ experiences with gig economy platforms. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems,
Cervero, R., & Kockelman, K. (1997). Travel demand and the 3Ds: Density, diversity, and design. Transportation Research Part D: Transport and Environment, 2(3), 199-219.
Chaniotakis, E., & Pel, A. J. (2015). Drivers’ parking location choice under uncertain parking availability and search times: A stated preference experiment. Transportation research part A: policy and practice, 82, 228-239.
Chen, Z., van Lierop, D., & Ettema, D. (2020). Dockless bike-sharing systems: what are the implications? Transport Reviews, 40(3), 333-353.
Cheng, J., Yan, R., & Gao, Y. (2020). Exploring spatial heterogeneity in accessibility and transit mode choice. Transportation Research Part D: Transport and Environment, 87, 102521.
Cherchi, E., & Hensher, D. A. (2015). Workshop synthesis: Stated preference surveys and experimental design, an audit of the journey so far and future research perspectives. Transportation Research Procedia, 11, 154-164.
Cherchi, E., & Ortúzar, J. d. D. (2011). On the use of mixed RP/SP models in prediction: Accounting for systematic and random taste heterogeneity. Transportation Science, 45(1), 98-108.
Choi, K., Park, H. J., & Griffin, G. P. (2023). Can shared micromobility replace auto travel? Evidence from the US urbanized areas between 2012 and 2019. International journal of sustainable transportation, 17(12), 1315-1323.
Choi, S. J., Jiao, J., Lee, H. K., & Farahi, A. (2023). Combatting the mismatch: Modeling bike-sharing rental and return machine learning classification forecast in Seoul, South Korea. Journal of Transport Geography, 109, 103587.
Cintrano, C., Chicano, F., & Alba, E. (2020). Using metaheuristics for the location of bicycle stations. Expert Systems with Applications, 161, 113684.
Conceição, M. A., Monteiro, M. M., Kasraian, D., van den Berg, P., Haustein, S., Alves, I., Azevedo, C. L., & Miranda, B. (2023). The effect of transport infrastructure, congestion and reliability on mental wellbeing: a systematic review of empirical studies. Transport Reviews, 43(2), 264-302.
Curtale, R., Liao, F., & van der Waerden, P. (2021). Understanding travel preferences for user-based relocation strategies of one-way electric car-sharing services. Transportation Research Part C: Emerging Technologies, 127, 103135.
da Silva Etges, A. P. B., & Cortimiglia, M. N. (2019). A systematic review of risk management in innovation-oriented firms. Journal of Risk Research, 22(3), 364-381.
Dalla Chiara, G., Krutein, K. F., Ranjbari, A., & Goodchild, A. (2022). Providing curb availability information to delivery drivers reduces cruising for parking. Scientific reports, 12(1), 19355. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9652335/pdf/41598_2022_Article_23987.pdf
Dällenbach, N. (2020). Low-carbon travel mode choices: The role of time perceptions and familiarity. Transportation Research Part D: Transport and Environment, 86, 102378.
Daniel, A. D., Junqueira, M., & Rodrigues, J. C. (2022). The influence of a gamified application on soft mobility promotion: An intention perspective. Journal of Cleaner Production, 351, 131551.
Daniels, R., & Mulley, C. (2013). Explaining walking distance to public transport: The dominance of public transport supply. Journal of Transport and Land Use, 6(2), 5-20.
De Reuver, R., & Biron, M. (2024). The effect of morning commutes on emotional exhaustion and task performance: taking mental effort and cognitive appraisal into account. Travel Behaviour and Society, 34, 100697.
De Rijk, A. E., Blanc, P. M. L., Schaufeli, W. B., & De Jonge, J. (1998). Active coping and need for control as moderators of the job demand–control model: Effects on burnout. Journal of occupational and organizational psychology, 71(1), 1-18.
DeMaio, P. (2009). Bike-sharing: History, impacts, models of provision, and future. Journal of public transportation, 12(4), 41-56.
DeMaio, P. J. (2003). Smart bikes: Public transportation for the 21st century. Transportation Quarterly, 57(1), 9-11.
Deng, L., Li, X., Luo, H., Fu, E.-K., Ma, J., Sun, L.-X., Huang, Z., Cai, S.-Z., & Jia, Y. (2020). Empirical study of landscape types, landscape elements and landscape components of the urban park promoting physiological and psychological restoration. Urban Forestry & Urban Greening, 48, 126488.
Dépalle, M., Sanchirico, J. N., Thébaud, O., O’farrell, S., Haynie, A. C., & Perruso, L. (2021). Scale-dependency in discrete choice models: a fishery application. Journal of Environmental Economics and Management, 105, 102388.
Dewsbury, J. D., & Bissell, D. (2015). Habit geographies: The perilous zones in the life of the individual. In (Vol. 22, pp. 21-28): Sage Publications Sage UK: London, England.
Diaz, A. J. O., Cantillo, V., & Arellana, J. (2023). Understanding how individuals perceive changes in the built environment and the transport system after implementing a BRT system. The case of Barranquilla, Colombia. Journal of Transport Geography, 110, 103623.
Dogaroglu, B., & Caliskanelli, S. P. (2020). Investigation of car park preference by intelligent system guidance. Research in Transportation Business & Management, 37, 100567.
Doody, B. J. (2020). Becoming ‘a Londoner’: Migrants’ experiences and habits of everyday (im) mobilities over the life course. Journal of Transport Geography, 82, 102572.
Dötterl, J., Bruns, R., Dunkel, J., & Ossowski, S. (2017). Towards dynamic rebalancing of bike sharing systems: an event-driven agents approach. Progress in Artificial Intelligence: 18th EPIA Conference on Artificial Intelligence, EPIA 2017, Porto, Portugal, September 5-8, 2017, Proceedings 18,
Du, M., Cheng, L., Li, X., & Yang, J. (2020). Factors affecting the travel mode choice of the urban elderly in healthcare activity: comparison between core area and suburban area. Sustainable cities and society, 52, 101868.
Dugas, M. J., Gagnon, F., Ladouceur, R., & Freeston, M. H. (1998). Generalized anxiety disorder: A preliminary test of a conceptual model. Behaviour research and therapy, 36(2), 215-226.
El-Geneidy, A., Grimsrud, M., Wasfi, R., Tétreault, P., & Surprenant-Legault, J. (2014). New evidence on walking distances to transit stops: Identifying redundancies and gaps using variable service areas. Transportation, 41, 193-210.
Eren, E., & Uz, V. E. (2020). A review on bike-sharing: The factors affecting bike-sharing demand. Sustainable cities and society, 54, 101882.
Evans, G. W., Wener, R. E., & Phillips, D. (2002). The morning rush hour: Predictability and commuter stress. Environment and behavior, 34(4), 521-530.
Ewing, R., & Cervero, R. (2010). Travel and the built environment: A meta-analysis. Journal of the American planning association, 76(3), 265-294.
Farnham, A., Ziegler, S., Blanke, U., Stone, E., Hatz, C., & Puhan, M. A. (2018). Does the DOSPERT scale predict risk-taking behaviour during travel? A study using smartphones. Journal of travel medicine, 25(1), tay064.
Fishman, E., Washington, S., & Haworth, N. (2013). Bike Share: A Synthesis of the Literature. Transport Reviews, 33(2), 148-165. https://doi.org/10.1080/01441647.2013.775612
Fishman, E., Washington, S., & Haworth, N. (2014). Bike share’s impact on car use: Evidence from the United States, Great Britain, and Australia. Transportation Research Part D: Transport and Environment, 31, 13-20. https://doi.org/10.1016/j.trd.2014.05.013
Fitzgerald, H. E., Parsons, E. M., Indriolo, T., Taghian, N. R., Gold, A. K., Hoyt, D. L., Milligan, M. A., Zvolensky, M. J., & Otto, M. W. (2022). Worrying but not acting: The role of intolerance of uncertainty in explaining the discrepancy in COVID-19-related responses. Cognitive Therapy and Research, 46(6), 1150-1156. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9372948/pdf/10608_2022_Article_10321.pdf
Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics. In: Sage publications Sage CA: Los Angeles, CA.
Fowkes, T., & Wardman, M. (1988). The design of stated preference travel choice experiments: with special reference to interpersonal taste variations. Journal of transport economics and policy, 27-44.
Fu, C., Yen, B. T., & Yeh, C.-J. (2024). The analysis of the shared bike usage pattern: Application of survival model to Taiwan YouBike. Asian Transport Studies, 10, 100125.
Gálvez-Pérez, D., Guirao, B., & Ortuño, A. (2021). Road safety of elderly pedestrians in the urban context: an approach based on infrastructure and socioeconomic variables. Transportation Research Procedia, 58, 254-261.
Gammelli, D., Wang, Y., Prak, D., Rodrigues, F., Minner, S., & Pereira, F. C. (2022). Predictive and prescriptive performance of bike-sharing demand forecasts for inventory management. Transportation Research Part C: Emerging Technologies, 138, 103571.
Grilli, G., Mohan, G., & Curtis, J. (2020). Public park attributes, park visits, and associated health status. Landscape and Urban Planning, 199, 103814.
Guo, D., Yao, E., Liu, S., Chen, R., Hong, J., & Zhang, J. (2023). Exploring the role of passengers’ attitude in the integration of dockless bike-sharing and public transit: A hybrid choice modeling approach. Journal of Cleaner Production, 384, 135627.
Guo, J., Xu, J., He, Z., & Liao, W. (2021). Research on risk propagation method of multimodal transport network under uncertainty. Physica A: Statistical Mechanics and its Applications, 563, 125494.
Guo, Y., Liu, Y., Lu, S., Chan, O. F., Chui, C. H. K., & Lum, T. Y. S. (2021). Objective and perceived built environment, sense of community, and mental wellbeing in older adults in Hong Kong: A multilevel structural equation study. Landscape and Urban Planning, 209, 104058.
Guo, Y., Yang, L., Lu, Y., & Zhao, R. (2021). Dockless bike-sharing as a feeder mode of metro commute? The role of the feeder-related built environment: Analytical framework and empirical evidence. Sustainable cities and society, 65, 102594.
Gutiérrez, M., Hurtubia, R., & de Dios Ortúzar, J. (2020). The role of habit and the built environment in the willingness to commute by bicycle. Travel Behaviour and Society, 20, 62-73.
Ha, J., Ki, D., Lee, S., & Ko, J. (2023). Mode choice and the first-/last-mile burden: The moderating effect of street-level walkability. Transportation Research Part D: Transport and Environment, 116, 103646.
Ha, J., Kim, H. J., & With, K. A. (2022). Urban green space alone is not enough: A landscape analysis linking the spatial distribution of urban green space to mental health in the city of Chicago. Landscape and Urban Planning, 218, 104309.
Hair, J. F., Anderson, R. E., Babin, B. J., & Black, W. C. (2010). Multivariate data analysis: A global perspective (Vol. 7). In: Upper Saddle River, NJ: Pearson.
Hamidi, Z., & Zhao, C. (2020). Shaping sustainable travel behaviour: Attitude, skills, and access all matter. Transportation Research Part D: Transport and Environment, 88, 102566.
Han, X., Yu, Y., Gao, Z.-Y., & Zhang, H. M. (2021). The value of pre-trip information on departure time and route choice in the morning commute under stochastic traffic conditions. Transportation Research Part B: Methodological, 152, 205-226.
Hanson, H. I., Eckberg, E., Widenberg, M., & Olsson, J. A. (2021). Gardens’ contribution to people and urban green space. Urban Forestry & Urban Greening, 63, 127198.
Hasan, R., & Hasan, R. (2022). Pedestrian safety using the Internet of things and sensors: Issues, challenges, and open problems. Future generation computer systems, 134, 187-203.
Hensher, D., Rose, J., & Greene, W. (2015). 1-In the beginning. Applied Choice Analysis.
Hensher, D. A. (1994). Stated preference analysis of travel choices: the state of practice. Transportation, 21, 107-133.
Hensher, D. A., Barnard, P. O., & Truong, T. P. (1988). The role of stated preference methods in studies of travel choice. Journal of transport economics and policy, 45-58.
Hensher, D. A., & Bradley, M. (1993). Using stated response choice data to enrich revealed preference discrete choice models. Marketing letters, 4, 139-151.
Herrenkind, B., Brendel, A. B., Nastjuk, I., Greve, M., & Kolbe, L. M. (2019). Investigating end-user acceptance of autonomous electric buses to accelerate diffusion. Transportation Research Part D: Transport and Environment, 74, 255-276.
Herrmann-Lunecke, M. G., Mora, R., & Vejares, P. (2021). Perception of the built environment and walking in pericentral neighbourhoods in Santiago, Chile. Travel Behaviour and Society, 23, 192-206.
Hong, D., Jang, S., & Lee, C. (2023). Investigation of shared micromobility preference for last-mile travel on shared parking lots in city center. Travel Behaviour and Society, 30, 163-177.
Huntley, C. D., Young, B., Smith, C. T., & Fisher, P. L. (2020). Uncertainty and test anxiety: Psychometric properties of the Intolerance of Uncertainty Scale–12 (IUS-12) among university students. International Journal of Educational Research, 104, 101672.
Hüsser, A. P., & Ohnmacht, T. (2023). A comparative study of eight COVID-19 protective measures and their impact on swiss tourists’ travel intentions. Tourism Management, 97, 104734. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9874056/pdf/main.pdf
Ibrahim, M. N., Logan, D. B., Koppel, S., & Fildes, B. (2024). The role of safety in modal choice and shift: A transport users’ perspective in Australia. Journal of Transport & Health, 38, 101863.
Jahanshahi, D., Tabibi, Z., & Van Wee, B. (2020). Factors influencing the acceptance and use of a bicycle sharing system: Applying an extended Unified Theory of Acceptance and Use of Technology (UTAUT). Case Studies on Transport Policy, 8(4), 1212-1223.
Javaid, A., Creutzig, F., & Bamberg, S. (2020). Determinants of low-carbon transport mode adoption: systematic review of reviews. Environmental Research Letters, 15(10), 103002.
Jensen, P., Rouquier, J.-B., Ovtracht, N., & Robardet, C. (2010). Characterizing the speed and paths of shared bicycle use in Lyon. Transportation Research Part D: Transport and Environment, 15(8), 522-524.
Jin, Y., Andersson, H., & Zhang, S. (2020). Do preferences to reduce health risks related to air pollution depend on illness type? Evidence from a choice experiment in Beijing, China. Journal of Environmental Economics and Management, 103, 102355.
Kabra, A., Belavina, E., & Girotra, K. (2016). Bike-share systems. Environmentally Responsible Supply Chains, 127-142.
Kahneman, D., & Tversky, A. (1979). Prospect Theory: An Analysis of Decision under Risk. Econometrica, 47(2), 263-292.
Kåresdotter, E., Page, J., Mörtberg, U., Näsström, H., & Kalantari, Z. (2022). First mile/last mile problems in smart and sustainable cities: A case study in Stockholm County. Journal of Urban Technology, 29(2), 115-137.
Kavta, K., & Goswami, A. K. (2022). Estimating mode choice of motorized two-wheeler commuters under the influence of combined travel demand management measures: An ICLV modeling approach. Transport policy, 126, 327-335.
Khawaja, N. G., & Yu, L. N. H. (2010). A comparison of the 27‐item and 12‐item intolerance of uncertainty scales. Clinical psychologist, 14(3), 97-106.
Khor, L. Y., Sariyev, O., & Loos, T. (2020). Gender differences in risk behavior and the link to household effects and individual wealth. Journal of Economic Psychology, 80, 102266.
Kim, J., Lee, H., & Lee, J. (2020). Smartphone preferences and brand loyalty: A discrete choice model reflecting the reference point and peer effect. Journal of Retailing and Consumer Services, 52, 101907.
Kim, J., Rasouli, S., & Timmermans, H. J. (2017). The effects of activity-travel context and individual attitudes on car-sharing decisions under travel time uncertainty: A hybrid choice modeling approach. Transportation Research Part D: Transport and Environment, 56, 189-202.
Kløjgaard, M. E., & Hess, S. (2014). Understanding the formation and influence of attitudes in patients' treatment choices for lower back pain: Testing the benefits of a hybrid choice model approach. Social Science & Medicine, 114, 138-150.
Kong, H., Jin, S. T., & Sui, D. Z. (2020). Deciphering the relationship between bikesharing and public transit: Modal substitution, integration, and complementation. Transportation Research Part D: Transport and Environment, 85, 102392.
König, M., & Neumayr, L. (2017). Users’ resistance towards radical innovations: The case of the self-driving car. Transportation research part F: traffic psychology and behaviour, 44, 42-52.
Kormos, C., Sussman, R., & Rosenberg, B. (2021). How cities can apply behavioral science to promote public transportation use. Behavioral Science & Policy, 7(1), 95-115.
Kroes, E. P., & Sheldon, R. J. (1988). Stated preference methods: an introduction. Journal of transport economics and policy, 11-25.
Lascău, L., Brumby, D. P., Gould, S. J., & Cox, A. L. (2024). “Sometimes It’s Like Putting the Track in Front of the Rushing Train”: Having to Be ‘On Call’for Work Limits the Temporal Flexibility of Crowdworkers. ACM Transactions on Computer-Human Interaction, 31(2), 1-45.
Lavasani, M., Hossan, M. S., Asgari, H., & Jin, X. (2017). Examining methodological issues on combined RP and SP data. Transportation Research Procedia, 25, 2330-2343.
Lee, C.-H., Chen, C.-H., Li, F., & Shie, A.-J. (2020). Customized and knowledge-centric service design model integrating case-based reasoning and TRIZ. Expert Systems with Applications, 143, 113062.
Lee, S., Yoon, J., & Woo, A. (2020). Does elderly safety matter? Associations between built environments and pedestrian crashes in Seoul, Korea. Accident Analysis & Prevention, 144, 105621.
Li, B. (2022). Stochastic modeling and adaptive forecasting for parking space availability with drivers’ time-varying arrival/departure behavior. Transportation Research Part B: Methodological, 166, 313-332.
Li, L., Wang, Z., Chen, L., & Wang, Z. (2020). Consumer preferences for battery electric vehicles: A choice experimental survey in China. Transportation Research Part D: Transport and Environment, 78, 102185.
Li, W., & Kamargianni, M. (2018). Providing quantified evidence to policy makers for promoting bike-sharing in heavily air-polluted cities: A mode choice model and policy simulation for Taiyuan-China. Transportation research part A: policy and practice, 111, 277-291.
Li, W., & Kamargianni, M. (2020). An Integrated Choice and Latent Variable Model to Explore the Influence of Attitudinal and Perceptual Factors on Shared Mobility Choices and Their Value of Time Estimation. Transportation Science, 54(1), 62-83. https://doi.org/10.1287/trsc.2019.0933
Li, X., Xu, Y., Zhang, X., Shi, W., Yue, Y., & Li, Q. (2023). Improving short-term bike sharing demand forecast through an irregular convolutional neural network. Transportation Research Part C: Emerging Technologies, 147, 103984.
Li, Y., & Liu, Y. (2021). The static bike rebalancing problem with optimal user incentives. Transportation research part E: logistics and transportation review, 146, 102216.
Li, Y., Yang, L., Shen, H., & Wu, Z. (2019). Modeling intra-destination travel behavior of tourists through spatio-temporal analysis. Journal of destination marketing & management, 11, 260-269.
Lin, J.-J., Zhao, P., Takada, K., Li, S., Yai, T., & Chen, C.-H. (2018). Built environment and public bike usage for metro access: A comparison of neighborhoods in Beijing, Taipei, and Tokyo. Transportation Research Part D: Transport and Environment, 63, 209-221.
Lind, C., & Boschen, M. J. (2009). Intolerance of uncertainty mediates the relationship between responsibility beliefs and compulsive checking. Journal of anxiety disorders, 23(8), 1047-1052.
Lindsey, R., Daniel, T., Gisches, E., & Rapoport, A. (2014). Pre-trip information and route-choice decisions with stochastic travel conditions: Theory. Transportation Research Part B: Methodological, 67, 187-207.
Liu, L., Sun, L., Chen, Y., & Ma, X. (2019). Optimizing fleet size and scheduling of feeder transit services considering the influence of bike-sharing systems. Journal of Cleaner Production, 236, 117550.
Liu, Q., Zhang, Y., Lin, Y., You, D., Zhang, W., Huang, Q., van den Bosch, C. C. K., & Lan, S. (2018). The relationship between self-rated naturalness of university green space and students’ restoration and health. Urban Forestry & Urban Greening, 34, 259-268.
Liu, W., Li, X., Zhang, F., & Yang, H. (2017). Interactive travel choices and traffic forecast in a doubly dynamical system with user inertia and information provision. Transportation Research Part C: Emerging Technologies, 85, 711-731.
Liu, X., Chen, X., Potoglou, D., Tian, M., & Fu, Y. (2023). Travel impedance, the built environment, and customized-bus ridership: A stop-to-stop level analysis. Transportation Research Part D: Transport and Environment, 122, 103889.
Lu, Y., Prato, C. G., & Corcoran, J. (2021). Disentangling the behavioural side of the first and last mile problem: the role of modality style and the built environment. Journal of Transport Geography, 91, 102936.
Luo, H., Chahine, R., Gkritza, K., & Cai, H. (2023). What motivates the use of shared mobility systems and their integration with public transit? Evidence from a choice experiment study. Transportation Research Part C: Emerging Technologies, 155, 104286.
Machavarapu, P. K., Ram, S., & Kant, P. (2023). Factors influencing bike share intentions of users in Indian cities: a structural equation modelling approach. Urban, Planning and Transport Research, 11(1), 2276405.
Malik, J., Bunch, D. S., Handy, S., & Circella, G. (2021). A deeper investigation into the effect of the built environment on the use of ridehailing for non-work travel. Journal of Transport Geography, 91, 102952.
McFadden, D. (1973). Conditional logit analysis of qualitative choice behavior.
McFadden, D. (1986). The choice theory approach to market research. Marketing science, 5(4), 275-297.
Meister, A., Winkler, C., Schmid, B., & Axhausen, K. (2023). In-store or online grocery shopping before and during the COVID-19 pandemic. Travel Behaviour and Society, 30, 291-301. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9576720/pdf/main.pdf
Mirhashemi, A., Amirifar, S., Kashani, A. T., & Zou, X. (2022). Macro-level literature analysis on pedestrian safety: Bibliometric overview, conceptual frames, and trends. Accident Analysis & Prevention, 174, 106720.
Mix, R., Hurtubia, R., & Raveau, S. (2022). Optimal location of bike-sharing stations: A built environment and accessibility approach. Transportation research part A: policy and practice, 160, 126-142.
Morikawa, T., Ben-Akiva, M., & McFadden, D. (2002). Discrete choice models incorporating revealed preferences and psychometric data. In Advances in econometrics (pp. 29-55). Emerald Group Publishing Limited.
Motz, A. (2021). Consumer acceptance of the energy transition in Switzerland: The role of attitudes explained through a hybrid discrete choice model. Energy Policy, 151, 112152.
Müller, C., Gönsch, J., Soppert, M., & Steinhardt, C. (2023). Dynamic pricing for shared mobility systems based on idle time data. OR Spectrum, 1-34.
Murtagh, E. M., Mair, J. L., Aguiar, E., Tudor-Locke, C., & Murphy, M. H. (2021). Outdoor walking speeds of apparently healthy adults: A systematic review and meta-analysis. Sports Medicine, 51, 125-141. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7806575/pdf/40279_2020_Article_1351.pdf
Nastjuk, I., Herrenkind, B., Marrone, M., Brendel, A. B., & Kolbe, L. M. (2020). What drives the acceptance of autonomous driving? An investigation of acceptance factors from an end-user's perspective. Technological Forecasting and Social Change, 161, 120319.
Oeschger, G., Carroll, P., & Caulfield, B. (2020). Micromobility and public transport integration: The current state of knowledge. Transportation Research Part D: Transport and Environment, 89, 102628.
Ohnmacht, T., Hüsser, A. P., & Thao, V. T. (2022). Pointers to interventions for promoting COVID-19 protective measures in tourism: A modelling approach using domain-specific risk-taking scale, theory of planned behaviour, and health belief model. Frontiers in Psychology, 13, 940090. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9277178/pdf/fpsyg-13-940090.pdf
Park, K., Farb, A., & Chen, S. (2021). First-/last-mile experience matters: The influence of the built environment on satisfaction and loyalty among public transit riders. Transport policy, 112, 32-42.
Parkes, S. D., Marsden, G., Shaheen, S. A., & Cohen, A. P. (2013). Understanding the diffusion of public bikesharing systems: evidence from Europe and North America. Journal of Transport Geography, 31, 94-103.
Pfrommer, J., Warrington, J., Schildbach, G., & Morari, M. (2014). Dynamic vehicle redistribution and online price incentives in shared mobility systems. IEEE Transactions on Intelligent Transportation Systems, 15(4), 1567-1578.
Piras, F., Sottile, E., Tuveri, G., & Meloni, I. (2021). Could psychosocial variables help assess pro-cycling policies? Transportation research part A: policy and practice, 154, 108-128.
Polydoropoulou, A., & Ben-Akiva, M. (2001). Combined revealed and stated preference nested logit access and mode choice model for multiple mass transit technologies. Transportation research record, 1771(1), 38-45.
Potoglou, D., & Kanaroglou, P. S. (2007). Household demand and willingness to pay for clean vehicles. Transportation Research Part D: Transport and Environment, 12(4), 264-274.
Preisler, T., Dethlefs, T., & Renz, W. (2016). Self-organizing redistribution of bicycles in a bike-sharing system based on decentralized control. 2016 Federated Conference on Computer Science and Information Systems (FedCSIS),
Raveau, S., Álvarez-Daziano, R., Yáñez, M. F., Bolduc, D., & de Dios Ortúzar, J. (2010). Sequential and simultaneous estimation of hybrid discrete choice models: Some new findings. Transportation research record, 2156(1), 131-139.
Reiss, S., & Bogenberger, K. (2017). A Relocation Strategy for Munich's Bike Sharing System: Combining an operator-based and a user-based Scheme. Transportation Research Procedia, 22, 105-114.
Romm, D., Verma, P., Karpinski, E., Sanders, T. L., & McKenzie, G. (2022). Differences in first-mile and last-mile behaviour in candidate multi-modal Boston bike-share micromobility trips. Journal of Transport Geography, 102, 103370.
Rossetti, T., Broaddus, A., Ruhl, M., & Daziano, R. (2023). Commuter preferences for a first-mile/last-mile microtransit service in the United States. Transportation research part A: policy and practice, 167, 103549.
Ruch, C., Warrington, J., & Morari, M. (2014). Rule-based price control for bike sharing systems. 2014 European Control Conference (ECC),
Sabouri, S., Tian, G., Ewing, R., Park, K., & Greene, W. (2021). The built environment and vehicle ownership modeling: Evidence from 32 diverse regions in the US. Journal of Transport Geography, 93, 103073.
Saki, S., & Hagen, T. (2024). Cruising for parking again: Measuring the ground truth and using survival analysis to reveal the determinants of the duration. Transportation research part A: policy and practice, 183, 104045.
Salak, B., Lindberg, K., Kienast, F., & Hunziker, M. (2021). How landscape-technology fit affects public evaluations of renewable energy infrastructure scenarios. A hybrid choice model. Renewable and Sustainable Energy Reviews, 143, 110896.
Sanchez, N. C., Pastor, L. A., & Larson, K. (2020). Autonomous bicycles: A new approach to bicycle-sharing systems. 2020 ieee 23rd international conference on intelligent transportation systems (itsc),
Schuijbroek, J., Hampshire, R. C., & Van Hoeve, W.-J. (2017). Inventory rebalancing and vehicle routing in bike sharing systems. European Journal of Operational Research, 257(3), 992-1004.
Shaheen, S., & Chan, N. (2016). Mobility and the sharing economy: Potential to facilitate the first-and last-mile public transit connections. Built Environment, 42(4), 573-588.
Shaheen, S. A., Guzman, S., & Zhang, H. (2010). Bikesharing in Europe, the Americas, and Asia: past, present, and future. Transportation research record, 2143(1), 159-167.
Shoup, D. C. (2006). Cruising for parking. Transport policy, 13(6), 479-486.
Shui, C., & Szeto, W. (2020). A review of bicycle-sharing service planning problems. Transportation Research Part C: Emerging Technologies, 117, 102648.
Soto, J. J., Márquez, L., & Macea, L. F. (2018). Accounting for attitudes on parking choice: An integrated choice and latent variable approach. Transportation research part A: policy and practice, 111, 65-77.
Stappers, N., Schipperijn, J., Kremers, S., Bekker, M., Jansen, M., De Vries, N., & Van Kann, D. (2021). Combining accelerometry and GPS to assess neighborhood-based physical activity: Associations with perceived neighborhood walkability. Environment and behavior, 53(7), 732-752.
Stolfi, D. H., Alba, E., & Yao, X. (2017). Predicting car park occupancy rates in smart cities. Smart Cities: Second International Conference, Smart-CT 2017, Málaga, Spain, June 14-16, 2017, Proceedings 2,
Szeto, W. Y., & Shui, C. S. (2018). Exact loading and unloading strategies for the static multi-vehicle bike repositioning problem. Transportation Research Part B: Methodological, 109, 176-211.
Taipei City Government. (2018). White Paper on Transportation Policy of Taipei. Department of Transportation, Taipei City Government.
Taipei City Government. (2022a). Analysis of usage characteristics of YouBike 2.0 in Taipei City. Retrieved from https://www.dot.gov.taipei/News.aspx?n=44EAAF8913752298&sms=DADC9630355BA510
Taipei City Government. (2022b). Statistical Application and Analysis Report - An Analysis of the Usage Characteristics of Taipei City's YouBike 2.0 System. Taipei City Government
Taipei City Government. (2024a). Taipei City’s monthly population and number of households by mile. Retrieved from https://ca.gov.taipei/News_Content.aspx?n=8693DC9620A1AABF&sms=D19E9582624D83CB&s=6F385E21D02AAFD5
Taipei City Government. (2024b). YouBike2.0 Taipei City public bicycle real-time information. Taipei City Government,. https://data.taipei/dataset/detail?id=c6bc8aed-557d-41d5-bfb1-8da24f78f2fb
Taylor, P. J. (1977). Quantitative methods in geography: an introduction to spatial analysis. (No Title).
Tian, Z., Feng, T., Timmermans, H. J., & Yao, B. (2021). Using autonomous vehicles or shared cars? Results of a stated choice experiment. Transportation Research Part C: Emerging Technologies, 128, 103117.
Train, K. E. (2009). Discrete choice methods with simulation. Cambridge university press.
Train, K. E., McFadden, D. L., & Goett, A. A. (1987). Consumer attitudes and voluntary rate schedules for public utilities. The review of economics and statistics, 383-391.
Tu, X., Huang, G., Wu, J., & Guo, X. (2020). How do travel distance and park size influence urban park visits? Urban Forestry & Urban Greening, 52, 126689.
Van De Coevering, P., Maat, K., & Van Wee, B. (2021). Causes and effects between attitudes, the built environment and car kilometres: A longitudinal analysis. Journal of Transport Geography, 91, 102982.
Vij, A., & Walker, J. L. (2016). How, when and why integrated choice and latent variable models are latently useful. Transportation Research Part B: Methodological, 90, 192-217.
Walker, J., & Ben-Akiva, M. (2002). Generalized random utility model. Mathematical social sciences, 43(3), 303-343.
Walker, J. L. (2001). Extended discrete choice models: integrated framework, flexible error structures, and latent variables Massachusetts Institute of Technology].
Wang, L., Zhou, K., Zhang, S., Moudon, A. V., Wang, J., Zhu, Y.-G., Sun, W., Lin, J., Tian, C., & Liu, M. (2023). Designing bike-friendly cities: Interactive effects of built environment factors on bike-sharing. Transportation Research Part D: Transport and Environment, 117, 103670.
Weber, E. U., Blais, A. R., & Betz, N. E. (2002). A domain‐specific risk‐attitude scale: Measuring risk perceptions and risk behaviors. Journal of behavioral decision making, 15(4), 263-290.
Wener, R. E., Evans, G. W., Phillips, D., & Nadler, N. (2003). Running for the 7: 45: The effects of public transit improvements on commuter stress. Transportation, 30, 203-220.
Wu, C., Kim, I., & Chung, H. (2021). The effects of built environment spatial variation on bike-sharing usage: A case study of Suzhou, China. Cities, 110, 103063.
Wu, L., & Liu, J. (2021). Need for control may motivate consumers to approach digital products: A social media advertising study. Electronic Commerce Research, 21, 1031-1054.
Xiao, J., Lou, Y., & Frisby, J. (2018). How likely am I to find parking?–A practical model-based framework for predicting parking availability. Transportation Research Part B: Methodological, 112, 19-39.
Xiao, X., Peng, Z., Lin, Y., Jin, Z., Shao, W., Chen, R., Cheng, N., & Mao, G. (2023). Parking Prediction in Smart Cities: A Survey. IEEE Transactions on Intelligent Transportation Systems.
Xu, G., Xiang, T., Li, Y., Li, J., & Guo, Q. (2022). A mixed rebalancing strategy in bike sharing systems. Engineering Optimization, 54(7), 1160-1177.
Xu, X., Wang, J., Poslad, S., Rui, X., Zhang, G., & Fan, Y. (2023). Exploring intra-urban human mobility and daily activity patterns from the lens of dockless bike-sharing: A case study of Beijing, China. International Journal of Applied Earth Observation and Geoinformation, 122, 103442.
Yang, Y., Han, X., Jiang, R., Jia, B., & Gao, Z.-Y. (2022). Competition and coordination in public transport: A mode choice experiment. Transportation Research Part C: Emerging Technologies, 143, 103858.
Yang, Y., Wang, C., Liu, W., & Zhou, P. (2018). Understanding the determinants of travel mode choice of residents and its carbon mitigation potential. Energy Policy, 115, 486-493.
Yen, B. T., Mulley, C., & Burke, M. (2019). Gamification in transport interventions: Another way to improve travel behavioural change. Cities, 85, 140-149.
Yen, B. T., Mulley, C., & Yeh, C.-J. (2023). How public shared bike can assist first and last mile accessibility: A case study of the MRT system in Taipei City, Taiwan. Journal of Transport Geography, 108, 103569.
Yu, Y., Han, X., Jia, B., Jiang, R., Gao, Z.-Y., & Zhang, H. M. (2021). Is providing inaccurate pre-trip information better than providing no information in the morning commute under stochastic bottleneck capacity? Transportation Research Part C: Emerging Technologies, 126, 103085.
Zeng, J., Zhang, L., Peng, S., Wang, J., & Tang, Q. (2021). Demand Forecasting for Shared Umbrella using BP Neural Network. 2021 11th International Conference on Information Science and Technology (ICIST),
Zhang, J., Meng, M., & David, Z. (2019). A dynamic pricing scheme with negative prices in dockless bike sharing systems. Transportation Research Part B: Methodological, 127, 201-224.
Zhang, J., Meng, M., Koh, P. P., & Wong, Y. D. (2021). Life duration of bike sharing systems. Case Studies on Transport Policy, 9(2), 674-680.
Zhang, X., & Li, W. (2023). Effects of a bike sharing system and COVID-19 on low-carbon traffic modal shift and emission reduction. Transport policy, 132, 42-64.
校內:2029-08-22公開