| 研究生: |
張家瑋 Chang, Chia-Wei |
|---|---|
| 論文名稱: |
考慮不完美界面效應的熱旋轉器數值模擬 Numerical simulations of thermal rotators with imperfect interface effects |
| 指導教授: |
陳東陽
Chen, Tung-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 不完美界面 、熱旋轉裝置 、中性內含物 、轉換材料 |
| 外文關鍵詞: | imperfect interfaces, thermal rotator, neutral inclusion, transformation media |
| 相關次數: | 點閱:105 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
熱超材料是一種人造材料,通過精心設計以展現所需的物理特性,大部份的熱超材料都需要兩種以上的材料組成,也就是複合材料,隨著複合材料的廣泛應用,如何界定不同材料之間的界面問題變得至關重要,近年來有許多學者投入相關研究,而過去的研究大多假設兩種不同材料的接觸界面是完美結合的,但是從理論上來看,界面總是存在著不完美性,而這種不完美性源於多種因素,包括材料結構的差異、化學成分的變化以及表面的粗糙度等,即使在外觀上兩種材料的接觸界面看起來非常緊密,從微觀角度來看,仍然存在著各種不規則性、裂縫、間隙等微小特徵,特別是在微小尺度下,由於接觸面積增加,不完界面的效應變得更加顯著,並對整體材料的性能產生重要影響。本研究延續張晉銓(2014)使用座標轉換法設計之旋轉斗篷與紀佩瑩(2016)之熱集中或熱屏蔽斗篷,結合中性內含物的概念,計算出了二維與三維空間中,異向性材料的等效熱傳導係數,對於完全異向性材料,我們提出了雙層環狀斗篷模型,其中每一層斗篷材料都使用座標轉換法進行設計,使熱流進入斗篷後有著旋轉的效果,這使我們對具有不完美界面的熱旋轉斗篷有所發想,延伸雙層斗篷的概念,將第二層斗篷厚度逼近極小,使用旋轉斗篷中的旋轉角來模擬出具有不完美界面的熱旋轉斗篷,旋轉角越大,代表著界面的不完美性越大,結果顯示,即使有著不完美界面,熱旋轉斗篷都能成功的保護內層區域不被外部觀察者發現,達到良好的隱形效果。
Thermal metamaterials are man-made materials that are carefully designed to exhibit the required physical properties. Most thermal metamaterials require more than two materials, that is, composite materials. In recent years, many scholars have invested in related research, and most of the previous research assumed that the contact interface of two different materials is perfectly combined, but in fact there is always an imperfection along the interface. This thesis examined the thermal rotation device first designed by Chang (2014) based on the coordinate transformation method. The difference is that we consider that the interface between the materials is an imperfect interface. Firstly, we explored the influence of imperfect interface on the thermal rotation device. Then, we proposed a double-layer thermal rotation cloak model, combined with the concept of neutral inclusions, and used a layer of anisotropic material to simulate the imperfect interface. We successfully simulated a thermal rotating cloak with an imperfect interface, and the results show that even considering the imperfect interface, the thermal rotating cloak can rotate the heat flow in the inner region at a specific angle and make it invisible to the outside field.
Alù, A. and Engheta, N. Achieving transparency with plasmonic and metamaterial coatings. Physical Review E, 72(1), 016623. (2005).
Benveniste, Y. A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media. Journal of the Mechanics and Physics of Solids, 54(4), 708-734. (2006).
Benveniste, Y. and Miloh, T. The effective conductivity of composites with imperfect thermal contact at constituent interfaces. International Journal of Engineering Science, 24(9), 1537-1552. (1986).
Chen, T. and Lin, J. H. Exact thermal invisibility for spherical cloaks with imperfect interfaces. AIP Advances, 12(7). (2022a).
Chen, T. and Lin, J H. Novel connections and physical implications of thermal metamaterials with imperfect interfaces. Scientific Reports, 12(1), 2734. (2022b).
Cheng, H. and Torquato, S. Effective conductivity of periodic arrays of spheres with interfacial resistance. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 453(1956), 145-161. (1997).
Cai, L.-W. and Sánchez-Dehesa, J. Analysis of Cummer–Schurig acoustic cloaking. New Journal of Physics, 9(12), 450. (2007).
Chen, H. and Chan, C. T. Acoustic cloaking in three dimensions using acoustic metamaterials. Applied Physics Letters, 91(18), 3518. (2007).
Chen, T. and Tsai, Y. L. A derivation for the acoustic material parameters in transformation domains. Journal of Sound and Vibration, 332(4), 766-779. (2013).
Chen, T., Weng, C. N. and Chen, J. S. Cloak for curvilinearly anisotropic media in conduction. Applied Physics Letters, 93(11), 4103. (2008).
Chen, H. and Chan, C. T. Transformation media that rotate electromagnetic fields. Applied Physics Letters, 90(24), 241105. (2007).
Chen, T. Thermal conduction of a circular inclusion with variable interface parameter. International Journal of Solids and Structures, 38(17), 3081-3097. (2001).
Chen, T., Weng, C. N. and Tsai, Y. L. Materials with constant anisotropic conductivity as a thermal cloak or concentrator. Journal of Applied Physics, 117(5), 054904. (2015).
Cheng, H. and Torquato, S. Effective conductivity of dispersions of spheres with a superconducting interface. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 453(1961), 1331-1344. (1997).
Fan, C., Gao, Y. and Huang, J. Shaped graded materials with an apparent negative thermal conductivity. Applied Physics Letters, 92(25), 1907. (2008).
Guenneau, S. and Amra, C. Anisotropic conductivity rotates heat fluxes in transient regimes. Optics Express, 21(5), 6578-6583. (2013).
Gu, S., Monteiro, E. and He, Q. C. Coordinate-free derivation and weak formulation of a general imperfect interface model for thermal conduction in composites. Composites Science and Technology, 71(9), 1209-1216. (2011).
Han, T., Bai, X., Thong, J. T., Li, B. and Qiu, C. W. Full control and manipulation of heat signatures: cloaking, camouflage and thermal metamaterials. Advanced Materials, 26(11), 1731-1734. (2014).
Hou, Q., Zhao, X., Meng, T. and Liu, C. Illusion thermal device based on material with constant anisotropic thermal conductivity for location camouflage. Applied Physics Letters, 109(10), 3506. (2016).
Han, T., Qiu, C. W. and Tang, X.Distributed external cloak without embedded antiobjects. Optics Letters, 35(15), 2642-2644. (2010).
Han, T., Zhao, J., Yuan, T., Lei, D. Y., Li, B. and Qiu, C. W. Theoretical realization of an ultra-efficient thermal-energy harvesting cell made of natural materials. Energy & Environmental Science, 6(12), 3537-3541. (2013).
Huy, H. P., & Sánchez-Palencia, E. Phénomènes de transmission à travers des couches minces de conductivité élevée. Journal of Mathematical Analysis and Applications, 47(2), 284-309. (1974).
Han, T., Yuan, T., Li, B. and Qiu, C. W. Homogeneous thermal cloak with constant conductivity and tunable heat localization. Scientific Reports, 3(1), 1593. (2013).
Hashin, Z. Thin interphase/imperfect interface in conduction. Journal of Applied Physics, 89(4), 2261-2267. (2001).
Holman, J. P. Heat Transfer. McGraw Hill, New York. (1986).
Javili, A., Kaessmair, S. and Steinmann, P. General imperfect interfaces. Computer Methods in Applied Mechanics and Engineering, 275, 76-97. (2014).
Luo, Y., Chen, H., Zhang, J., Ran, L. and Kong, J. A. Design and analytical full-wave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations. Physical Review B, 77(12), 125127. (2008).
Kanté, B., Germain, D. and de Lustrac, A. Experimental demonstration of a nonmagnetic metamaterial cloak at microwave frequencies. Physical Review B, 80(20), 201104. (2009).
Kapitza, P. The study of heat transfer in helium II. J. Phys.(Moscow), 4, 181. (1941).
Knott, E. F., Schaeffer, J. F. and Tulley, M. T. Radar Cross Section: SciTech Publishing. (2004).
Lipton, R. Influence of interfacial surface conduction on the DC electrical conductivity of particle reinforced composites. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1973), 1371-1382. (1998).
Lipton, R. and Vernescu, B. Composites with imperfect interface. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 452(1945), 329-358. (1996).
Mansfield, E. Neutral Holes in plane sheet—reinforced iioles which are elastically equivalent to the uncut sheet. The Quarterly Journal of Mechanics and Applied Mathematics, 6(3), 370-378. (1953).
Miloh, T. and Benveniste, Y. On the effective conductivity of composites with ellipsoidal inhomogeneities and highly conducting interfaces. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 455(1987), 2687-2706. (1999).
Milton, G. W., Briane, M. and Willis, J. R. On cloaking for elasticity and physical equations with a transformation invariant form. New Journal of Physics, 8(10), 248. (2006).
Milton, G. W., The Theory of Composites, Cambridge University Press, Cambridge. (2002).
Narayana, S. and Sato, Y. Heat flux manipulation with engineered thermal materials. Physical review letters, 108(21), 214303. (2012).
Norris, A. N. and Parnell, W. J. Static elastic cloaking, low-frequency elastic wave transparency and neutral inclusions. Proceedings of the Royal Society A, 476(2240), 20190725. (2020).
Pendry, J. B., Schurig, D. and Smith, D. R. Controlling electromagnetic fields. Science, 312(5781), 1780-1782. (2006).
Rahm, M., Schurig, D., Roberts, D. A., Cummer, S. A., Smith, D. R. and Pendry, J. B. Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations. Photonics and Nanostructures-Fundamentals and Applications, 6(1), 87-95. (2008).
Sanchez-Palencia, E. Comportement limite d’un probleme de transmissiona travers une plaque faiblement conductrice. CR Acad. Sci. Paris Ser. A, 270, 1026-1028. (1970).
Schittny, R., Kadic, M., Guenneau, S. and Wegener, M. Experiments on transformation thermodynamics: molding the flow of heat. Physical Review Letters, 110(19), 195901. (2013).
Stenger, N., Wilhelm, M. and Wegener, M. Experiments on elastic cloaking in thin plates. Physical Review Letters, 108(1), 014301. (2012).
Torquato, S. and Rintoul, M. Effect of the interface on the properties of composite media. Physical Review Letters, 75(22), 4067. (1995).
Van, B. J. Electromagnetic Fields. Mc-Graw Hill, New York. (1964).
Viktor, G. V. The electrodynamics of substances with simultaneously negative values of ε and μ, Soviet Physics Uspekhi 10(4) 509–514 (1968).
Xu, H., Shi, X., Gao, F., Sun, H. and Zhang, B. Ultrathin three-dimensional thermal cloak. Physical Review Letters, 112(5), 054301. (2014).
Zhang, J., Luo, Y., Chen, H. and Wu, B. I. Cloak of arbitrary shape. JOSA B, 25(11), 1776-1779. (2008).
張晉銓,利用座標轉換法來模擬熱流傳播方向的操控,國立成功大學土木所碩士論文 (2014)。
蔡育霖,均勻轉換介質材料於聲波以及熱傳物理課題之研究,國立成功大學土木所博士論文 (2015)
紀佩瑩,不完美介面效應在靜態與時諧之熱屏蔽裝置的應用,國立成功大學土木所碩士論文 (2016)。
黃冠閔,利用保角變換探討熱中性內含物與轉換光學問題,國立成功大學土木所碩士論文 (2017)。
林俊宏,考慮不完美界面影響之熱傳導超材料設計,國立成功大學土木所博士論文(2022)。