簡易檢索 / 詳目顯示

研究生: 廖勇康
Liaw, Yong-Kang
論文名稱: 以極化拉曼散射與共軛焦光電整合量測平臺分析半導體高分子形貌有序程度與結構缺陷之關聯
Evaluating the correlation between structural defects and various morphologic orders in the thin films of semiconducting polymers by polarized Raman scattering and confocal optoelectronic probe station
指導教授: 徐邦昱
Hsu, Bang-Yu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 73
中文關鍵詞: 偏極化拉曼頻譜儀導電高分子晶格扭曲缺陷
外文關鍵詞: Polarized Raman spectroscopy, Conducting polymers, Crystal lattice distortion defect
相關次數: 點閱:134下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    導電高分子因可撓、可導電等特性,為傳統半導體元件提供了新穎的研究與應用方向,如電子皮膚、可曲撓式顯示器與面板、曲面太陽能電池與光偵測器等。但上述軟性可撓的優勢,也同時帶來應用上的限制,易扭曲的高分子主幹形成形貌與電子結構缺陷,導致了電子元件傳導效率低下,不只限制了應用,缺陷更在不同尺度干擾光、電學量測,捕捉或散射載子,讓研究者無法直接研究材料的本質電子結構。爲了有效降低軟性材料因製程引入的各類形貌缺陷,必須建立分子能有序成膜的製程,並定量分析製程中,主幹扭曲的數量與扭曲的程度,才能量化評估製程參數對缺陷的影響,從分子尺度直接控制電子結構效能,開展有機電子學的應用並深化研究。
    本研究使用偏極化拉曼散射頻譜儀做爲量測工具,分析導電高分子有序性對應的拉曼震盪頻率因缺陷產生的變化,以此為基礎進行散射峰的擬合分析,定量分析不同有序性下主幹扭曲角度與對應的缺陷比例。此外,本研究使用拉曼散射光強矩陣,推算導電高分子有序相與散射光的空間關係,搭配散射峰擬合,成功分析形貌缺陷在不同薄膜有序性下的缺陷量及空間分佈,模擬的散射曲線與實驗吻合,確認分析方法學的正確性,為巨觀範圍的元件電學量測,提供微觀導電高分子結構缺陷訊息的分析方法學。

    SUMMARY

    In this work, an advanced polarized Raman scattering spectroscopy was successfully built, and applied to analyze the dispersed lattice oscillation frequency corresponding to the disorders of conducting polymers. In this analysis work, the scattering peaks with higher vibronic frequency was identified, and were assigned as the distorted defects on the molecular backbones. And conducting polymer thin films with different level of disorders were quantitatively analyzed. The scattering matrix of light intensity was simulated to calculate the spatial distribution of distorted backbones using the crystal theory. And this analytical methodology can successfully verify that structural distortion changes in organic conducting polymers.

    Keywords: Polarized Raman spectroscopy, Conducting polymers, Crystal lattice distortion defect

    摘要 II 目錄 VIII 圖目錄 X 表目錄 XIV 第一章、 緒論 1 壹、前言與研究動機 1 第二章、 文獻回顧 3 壹、 導電聚合物 (Conductive Polymer) 3 一、 薄膜製程與排列調控 6 二、 共軛高分子載子傳遞方式 8 貳、 自組裝單分子層 (Self-Assembled Monolayer, SAM) 9 一、 自組裝單分子層結構 9 二、 自組裝單分子層分佈與密度關係 11 參、 頻譜方向性原理與定義 13 一、 極化 (Polarization, P) 13 二、 異向性 (Anisotropy, r) 14 三、 取向因子 (Orientation factor, r(θ) ) 16 四、 二色向比 (Dichroic ratio, D) 21 肆、拉曼散射頻譜 (Raman Scattering Spectrum) 22 一、拉曼效應原理 22 二、散射光與晶格關係 24 三、震盪頻率與高分子有序度分析 26 第三章、 實驗器材及實驗方法 28 壹、 實驗藥品及材料 28 貳、 實驗儀器 30 參、 實驗流程 33 肆、 實驗儀器架設 37 一、 偏極化拉曼散射頻譜儀 37 二、 真空腔體與樣品平臺設計 39 第四章、 結果與討論 41 壹、 基材表面性質改質 41 一、 設計一維奈米溝槽 41 二、 臭氧與單分子層改質 42 貳、 變溫紫外-可見光吸收光譜 44 參、 極化拉曼散射頻譜 46 一、 異向性比 (Anisotropic ratio,αa) 46 二、 拉曼散射峰擬合 51 三、 有序晶格與拉曼極座標 58 四、 缺陷分佈 61 第五章、 結論 68 第六章、 參考資料 69

    [1] Heeger, Alan J. "Semiconducting and metallic polymers: the fourth generation of polymeric materials." The Journal of physical chemistry B 105.36 (2001): 8475-8491.
    [2] Heeger, Alan J., Niyazi Serdar Sariciftci, and Ebinazar B. Namdas. "Semiconducting and metallic polymers". 2010.
    [3] He, Weina, and Xuetong Zhang. "Conducting polymer aerogels." Conducting Polymers (2016): 49-72.
    [4] Gutzler, Rico. "Band-structure engineering in conjugated 2D polymers." Physical Chemistry Chemical Physics 18.42 (2016): 29092-29100.
    [5] Rasmussen, Seth. "Low-bandgap polymers." Encyclopedia of polymeric nanomaterials (2015): 1155-1166.
    [6] Chang, Hao, et al. "Solvent vapor assisted spin-coating: A simple method to directly achieve high mobility from P3HT based thin film transistors." Synthetic metals 184 (2013): 1-4.
    [7] Wu, Dawei, et al. "Blade coating aligned, high-performance, semiconducting-polymer transistors." Chemistry of Materials 30.6 (2018): 1924-1936.
    [8] Park, Joonhyung, Sangwoon Lee, and Hong H. Lee. "High-mobility polymer thin-film transistors fabricated by solvent-assisted drop-casting." Organic electronics 7.5 (2006): 256-260.
    [9] Speakman, Stuart P., et al. "High performance organic semiconducting thin films: Ink jet printed polythiophene [rr-P3HT]." Organic Electronics 2.2 (2001): 65-73.
    [10] Shin, Jicheol, et al. "Template‐Guided Solution‐Shearing Method for Enhanced Charge Carrier Mobility in Diketopyrrolopyrrole‐Based Polymer Field‐Effect Transistors." Advanced Materials 26.34 (2014): 6031-6035.
    [11] Noriega, Rodrigo, et al. "A general relationship between disorder, aggregation and charge transport in conjugated polymers." Nature materials 12.11 (2013): 1038-1044.
    [12] Yao, Yifan, Huanli Dong, and Wenping Hu. "Charge transport in organic and polymeric semiconductors for flexible and stretchable devices." Advanced Materials 28.22 (2016): 4513-4523.
    [13] Nie, Heng-Yong, Mary J. Walzak, and N. Stewart McIntyre. "Delivering octadecylphosphonic acid self-assembled monolayers on a Si wafer and other oxide surfaces." The Journal of Physical Chemistry B 110.42 (2006): 21101-21108.
    [14] Lessel, Matthias, et al. "Self‐assembled silane monolayers: an efficient step‐by‐step recipe for high‐quality, low energy surfaces." Surface and Interface Analysis 47.5 (2015): 557-564.
    [15] Eisert, F., et al. "Detection of molecular alignment in confined films." Science 287.5452 (2000): 468-470.
    [16] Cione, Angeline M., et al. "Deposition and Wettability of [bmim][triflate] on Self-Assembled Monolayers." The Journal of Physical Chemistry C 113.6 (2009): 2384-2392.
    [17] Britt, David W., and Vladimir Hlady. "An AFM study of the effects of silanization temperature, hydration, and annealing on the nucleation and aggregation of condensed OTS domains on mica." Journal of colloid and interface science 178.2 (1996): 775-784.
    [18] Schwartz, Daniel K. "Mechanisms and kinetics of self-assembled monolayer formation." Annual review of physical chemistry 52.1 (2001): 107-137.
    [19] Castillo, Juan Manuel, et al. "Characterization of alkylsilane self-assembled monolayers by molecular simulation." Langmuir 31.9 (2015): 2630-2638.
    [20] Virkar, Ajay, et al. "The role of OTS density on pentacene and C60 nucleation, thin film growth, and transistor performance." Advanced Functional Materials 19.12 (2009): 1962-1970.
    [21] Lakowicz, Joseph R., ed. Principles of fluorescence spectroscopy. Boston, MA: springer US, 2006.
    [22] Tanizaki, Yoshié. "Dichroism of dyes in the stretched PVA sheet. II. the relation between the optical density ratio and the stretch ratio, and an attempt to analyse relative directions of absorption bands." Bulletin of the Chemical Society of Japan 32.1 (1959): 75-80.
    [23] Tanizaki, Yoshié. "The correction of the relation of the optical density ratio to the stretch ratio on the dichroic spectra." Bulletin of the Chemical Society of Japan 38.10 (1965): 1798-1799.
    [24] University Physics 6th ed. F.W. Sears, M.W. Zemansky, H.D. Young, ISBN 0-201-07199-1.
    [25] Müller, M., W. Ouyang, and B. Keßler. "Dichroic ATR-FTIR spectroscopy on oriented α-helical poly (l-lysine) multilayered with polyanions." Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 77.4 (2010): 709-716.
    [26] Li, Jiali, et al. "Highly anisotropic P3HT film fabricated via epitaxy on an oriented polyethylene film and solvent vapor treatment." Langmuir 35.24 (2019): 7841-7847.
    [27] Liem, H‐M., et al. "Raman anisotropy measurements: An effective probe of molecular orientation in conjugated polymer thin films." Advanced Functional Materials 13.1 (2003): 66-72.
    [28] Ferraro, John R. Introductory raman spectroscopy. Elsevier, 2003.
    [29] Edwards, David F. Raman scattering in crystals. No. UCID-21510. Lawrence Livermore National Lab., CA (USA), 1988.
    [30] Loudon, Rodney. "The Raman effect in crystals." Advances in Physics 13.52 (1964): 423-482.
    [31] Song, Qingjun, et al. "The in-plane anisotropy of WTe2 investigated by angle-dependent and polarized Raman spectroscopy." Scientific reports 6.1 (2016): 1-9.
    [32] Ali, Shahzad Akhtar, et al. "Helicity-selective Raman scattering from in-plane anisotropic α-MoO3." Applied Physics Letters 119.19 (2021): 193104.
    [33] Heumueller, Thomas, et al. "Reducing burn-in voltage loss in polymer solar cells by increasing the polymer crystallinity." Energy & Environmental Science 7.9 (2014): 2974-2980.
    [34] Tsoi, Wing C., et al. "The nature of in-plane skeleton Raman modes of P3HT and their correlation to the degree of molecular order in P3HT: PCBM blend thin films." Journal of the American Chemical Society 133.25 (2011): 9834-9843.
    [35] 邱世偉(2020)。以異向性拉曼散射頻譜與載子遷移率解析高度有序聚噻吩奈米纖維之侷域分子有序性對巨觀載子遷移率的影響。國立成功大學材料科學及工程學系碩士論文,臺南市。取自https://hdl.handle.net/11296/8je5sm
    [36] Chaudhary, Vivek, et al. "Self-assembled H-aggregation induced high performance poly (3-hexylthiophene) Schottky diode." Journal of Applied Physics 122.22 (2017): 225501.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE