簡易檢索 / 詳目顯示

研究生: 張旭智
Zhang, Xu-Zhi
論文名稱: 基於 BERTopic 因果特徵分析之文本反事實生成深度學習模型研究
Research on Deep Learning Model for Text Counterfactual Generation Based on BERTopic Causal Feature Analysis
指導教授: 李昇暾
Li, Sheng-Tun
學位類別: 碩士
Master
系所名稱: 管理學院 - 資訊管理研究所
Institute of Information Management
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 53
中文關鍵詞: 可解釋人工智慧(XAI)反事實生成因果推論文本特徵分析
外文關鍵詞: Explainable AI (XAI), Counterfactual Generation, Causal Inference, Textual Feature Analysis
相關次數: 點閱:38下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著機器學習模型的日益複雜化,各領域對於模型解釋性的需求不斷增加,尤其是在需要理解模型決策的關鍵領域。本研究專注於開發一個框架,用於從高維度文本數據中提取因果洞見。透過運用先進的因果推論和反事實生成技術,該方法能夠識別並量化關鍵文本特徵對預測結果的影響,提供每個特徵對模型決策影響的清晰指標。不同於傳統僅將文本視為未分化輸入的模型,這種方法允許更細緻的分析,使使用者能夠理解特定詞語或短語如何驅動模型的預測。本研究旨在縮小文本類AI系統中準確性與解釋性之間的差距,促進可解釋AI的發展,並為情感分析、風險評估和客戶回饋解讀等應用領域提供實用的見解。

    In recent years, the increasing complexity of machine learning models has driven the need for greater interpretability, particularly in fields where understanding model decisions is crucial. This study focuses on developing a framework for extracting causal insights from high-dimensional textual data. By leveraging advanced techniques in causal inference and counterfactual generation, the proposed approach identifies and quantifies the impact of key textual features on prediction outcomes, providing a clear indicator of each feature’s influ-ence on model decisions. Unlike traditional models that treat text as an undifferentiated input, this method allows for a more granular analysis, enabling users to understand how specific words or phrases drive model predictions. This research aims to bridge the gap between accuracy and interpretability in text-based AI systems, contributing to the advancement of explainable AI and offering practical insights for applications in fields like sentiment analy-sis, risk assessment, and customer feedback interpretation.

    Abstract I 摘要 II 致謝 III Contents V List of Figures VII List of Tables VIII Chapter 1 Introduction 1 1.1 Research Background 1 1.2 Research Objectives 2 1.3 Research Architecture 2 Chapter 2 Related Work 5 2.1 Theoretical Foundation of Casual Inference 5 2.2 Theoretical Foundation of Counterfactuals 6 2.3 Models for Casual Inference 8 2.4 Models for Counterfact generation 10 2.5 Theoretical Foundation of BERT 11 2.5.1 Self attention and Transformer 11 2.5.2 BERT 13 2.6 Models of Text Feature Extracting 14 2.7 Summary 15 Chapter 3 Methodology 16 3.1 Problem Definition 16 3.2 System Architecture 17 3.3 Text Feature Extraction 18 3.4 Casual Inference Framework 18 3.5 Counterfactual Generation - DiCE 20 3.6 Synthetic Samples Generation 21 3.7 Text Classification with BERT 22 3.8 Summary 23 3.9 Symbols and Definitions Used in This Chapter 24 Chapter 4 Experiments and Analysis 26 4.1 Data Description 26 4.2 Implementation Details 27 4.3 Evaluation Metrics 29 4.4 Results 31 4.4.1 Feature Extraction, ATE Selection, and Counterfactual Generation 32 4.4.2 Counterfactual Results Analysis 34 4.5 Summary 37 5. Conclusions and Future Work 38 5.1 Summary of Findings and Contributions 38 5.2 Future Research 39 References 41

    Aizawa, A. (2003). An information-theoretic perspective of tf–idf measures. Information Processing & Management, 39(1), 45-65.
    Bhattacharjee, A., Moraffah, R., Garland, J., & Liu, H. (2024). Zero-shot LLM-guided Counterfactual Generation for Text. arXiv preprint arXiv:2405.04793.
    Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning research, 3(Jan), 993-1022.
    Chipman, H. A., George, E. I., & McCulloch, R. E. (2010). BART: Bayesian additive regression trees.
    Cui, Y., Pu, H., Shi, X., Miao, W., & Tchetgen Tchetgen, E. (2024). Semiparametric proximal causal inference. Journal of the American Statistical Association, 119(546), 1348-1359.
    Devlin, J. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
    Dwivedi, R., Dave, D., Naik, H., Singhal, S., Omer, R., Patel, P., . . . Morgan, G. (2023). Explainable AI (XAI): Core ideas, techniques, and solutions. ACM Computing Surveys, 55(9), 1-33.
    Feder, A., Keith, K. A., Manzoor, E., Pryzant, R., Sridhar, D., Wood-Doughty, Z., . . . Roberts, M. E. (2022). Causal inference in natural language processing: Estimation, prediction, interpretation and beyond. Transactions of the Association for Computational Linguistics, 10, 1138-1158.
    Grootendorst, M. (2022). BERTopic: Neural topic modeling with a class-based TF-IDF procedure. arXiv preprint arXiv:2203.05794.
    Imbens, G. W., & Rubin, D. B. (2015). Causal inference in statistics, social, and biomedical sciences: Cambridge university press.
    Kingma, D. P. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
    Madaan, N., Padhi, I., Panwar, N., & Saha, D. (2021). Generate your counterfactuals: Towards controlled counterfactual generation for text. Paper presented at the Proceedings of the AAAI Conference on Artificial Intelligence.
    McInnes, L., Healy, J., & Melville, J. (2018). Umap: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426.
    Meyboom, R. H., Hekster, Y. A., Egberts, A. C., Gribnau, F. W., & Edwards, I. R. (1997). Causal or casual? The role of causality assessment in pharmacovigilance. Drug safety, 17, 374-389.
    Morgan, S. (2015). Counterfactuals and causal inference: Cambridge University Press.
    Mothilal, R. K., Sharma, A., & Tan, C. (2019). Explaining Machine Learning Classifiers through Diverse Counterfactual Explanations.(5 2019). In.
    Papineni, K., Roukos, S., Ward, T., & Zhu, W.-J. (2002). Bleu: a method for automatic evaluation of machine translation. Paper presented at the Proceedings of the 40th annual meeting of the Association for Computational Linguistics.
    Pearl, J. (2010). Causal inference. Causality: objectives and assessment, 39-58.
    Rahman, M. F., Liu, W., Suhaim, S. B., Thirumuruganathan, S., Zhang, N., & Das, G. (2016). Hdbscan: Density based clustering over location based services. arXiv preprint arXiv:1602.03730.
    Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika, 70(1), 41-55.
    Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of educational Psychology, 66(5), 688.
    Shi, C., Blei, D., & Veitch, V. (2019). Adapting neural networks for the estimation of treatment effects. Advances in neural information processing systems, 32.
    Sun, C., Qiu, X., Xu, Y., & Huang, X. (2019). How to fine-tune bert for text classification? Paper presented at the Chinese computational linguistics: 18th China national conference, CCL 2019, Kunming, China, October 18–20, 2019, proceedings 18.
    Vaswani, A. (2017). Attention is all you need. Advances in neural information processing systems.
    Wachter, S., Mittelstadt, B., & Russell, C. (2017). Counterfactual explanations without opening the black box: Automated decisions and the GDPR. Harv. JL & Tech., 31, 841.
    Zhao, Q., & Hastie, T. (2021). Causal interpretations of black-box models. Journal of Business & Economic Statistics, 39(1), 272-281.

    無法下載圖示 校內:2030-06-12公開
    校外:2030-06-12公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE