| 研究生: |
王盈淇 Wang, Yin-Chi |
|---|---|
| 論文名稱: |
溫度效應對電紡絲製備高分子纖維之影響 Temperature effects on preparing polymer fibers via electrospinning |
| 指導教授: |
王紀
Wang, Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 170 |
| 中文關鍵詞: | 聚丙烯睛 、電紡絲 |
| 外文關鍵詞: | Polyacrylonitrile, electrospinning |
| 相關次數: | 點閱:341 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
藉由改變PAN/DMF溶液溫度,可使黏度大幅度下降,導電度上升且表面張力下降,以上三種溶液特性改變趨勢皆可讓電力更有效的拉伸PAN/DMF液柱,得到比室溫電紡更小的PAN纖維直徑。但於高溫的系統,溶劑更容易揮發,使懸在針頭前端的液滴gel化,造成不穩定電紡的因素,本研究利用通入高溫溶劑蒸氣的方法,可有效改善針端之阻塞,達到穩定電紡噴絲的目標。
選取室溫電紡製備均勻PAN纖維的最小濃度(約為6wt%),提高溶液溫度,使黏度降低且導電度上升,但溶液中高分子鏈entanglement的程度不變,因此可得很細的纖維。利用此製程電紡6wt% PAN/DMF溶液,於溶液溫度88.7oC下,操作變因為9.3kV、0.3mL/h、工作距離為7cm,可得平均直徑為65±27nm的PAN纖維。若使用12wt% PAN/DMF溶液,改變溶液溫度由32.2oC到88.7oC,可使纖維直徑由1063±171nm縮小為463±290nm,纖維直徑變小2.3倍。本研究發現溶液溫度升高後,Taylor cone變大,但液柱長縮短。
Abstract
By increasing the temperature of PAN/DMF solutions, the viscosity and surface tension of the solution can be reduced, but the conductivity is increased. Due to the enhanced solution properties, the liquid jet can be effectinely stretched by the applied voltage, and the average diameter of electrospun fibers is smaller than that obtained at room temperature. In high-temperature electrospinning process, the droplet at the tip of the needle becomes gel quickly, making the process interuppted. In this research, a special design is used to confine the needle tip in an atmosphere with saturated solvents.
Choosing the lowest concentration(6wt%) from which smooth fibers can be prepared by room-temperature electrospinning, the solution temperature is increased to obtain solutions with low viscosity, high conductivity and sufficient entanglement density; hence we can obtain very fine fibers. The average diameter of electrospun fibers was 65±27nm from a 6wt% solution at 88.7oC. For a 12wt% solution, by changing the solution temperature from 32.2oC to 88.7oC,the average diameter of electrospun was reduced, from 1063±171nm to 463±290nm, being about 2.3 times reduction. This study confirmed that fiber diameter and jet length could be reduced , but Taylor cone became larger by the increase in the solution temperature.
八、參考文獻
【1】X. Lord Rayleigh, On the equilibrium of liquid conducting masses charged with electricity, London, Edinburgh, and Dublin Phil. Mag. 44, 184, 6, (1882).
【2】G. I. Taylor, Disintegration of water drops in an electric field, Proc. R. Soc. London, Ser. A 280, 383 (1964).
【3】G. I. Taylor, The stability of horizontal fluid interface in a vertical electric field, J. Fluid Mech. 22, 1 (1965).
【4】G. I. Taylor, The circulation produced in a drop by an electric field, Proc. R. Soc. London, Ser. A 291, 145 (1966).
【5】G. I. Taylor, Electrically driven jets, Proc. R. Soc. London, Ser. A 313, 453 (1969).
【6】D. H. Reneker, I. Chun, Nanometre diameter fibres of polymer, produced by electrspinning, Nanotechnology 7, 216 (1996).
【7】H. Xu, D. Galehouse, D. H. Reneker, Study of the relationship between jet diameter and interference color during electrospinning, Polymer Materials: Science and Engineering 88, 37 (2003).
【8】P. K. Baumgarten, Electrostatics spinning of acrylic microfiber, J. Colloid Interface Sci. 36, 1, 71 (1971).
【9】D. H. Reneker, A. L. Yarin, H. Fong, S. Koombhongse, Bending instability of electrically charged liquid jets of polymer solutions in electrospinning, J. Appl. Phys. 87, 4531 (2000).
【10】L. Yarin, S. Koombhongse, D. H. Reneker, Bending instability in electrospinning of nanofibers, J. Appl. Phys. 89, 3018 (2001).
【11】L. Yarin, S. Koombhongse, D. H. Reneker, Taylor cone and jetting from liquid droplets in electrospinning of nanofibers, J. Appl. Phys. 90, 4836(2001).
【12】S. Koombhongse, W. Liu, D. H. Reneker, Flat polymer ribbons and other shapes by electrospinning, J. Polym. Sci., B, Polym. Phys. Ed. 39, 2598 (2001).
【13】I. Chun , D. H. Reneker, H. Fong , Fang X, Dietzel J, Tan NB, et al. J. Adv. Mater. 31, 36 (1999).
【14】H. Hou, D. H Reneker, Adv. Mater. 16, 69 (2004).
【15】N. Takami, A. Satoh, M. Hara, T. J. Oshaki, Electrochem. Soc. 142, 2564 (1995).
【16】C. Kim, K. S. Yang, Appl. Phys. Lett. 83, 1216 (2003).
【17】C. Arbizzani, M. Mastragostino, L. Meneghello, R. Paraventi, Adv. Mater. 8, 331 (1996).
【18】M. Endo, K. Takeuchi, S. Igarashi, J. Phys. Chem. Solids 54, 1841 (1993).
【19】V. I. Merkulov, A. V. Melechko, M. A. Guillorn, Appl. Phys. Lett. 80, 4816 (2002).
【20】S. Y. Gu, J. Ren, G. J. Vancso, Process optimization and empirical modeling for electrospun polyacrylonitrile(PAN) nanofiber precursor of carbon nanofibers, European Polymer Journal 41, 2559 (2005).
【21】S. Y. Gu, J. Ren, Q.L. Wu, Preparation and structure of electrospun PAN nanofibers as a precursor of carbon nanofiber, Synthetic Metals 155, 157 (2005).
【22】V. E. Kalayci, P. K. Patra, Y. K. Kim, S. C. Ugbolue, S. B. Warner, Charge, consequences in electrospun polyacrylonitrile (PAN) nanofibers, Polymer 46, 7191 (2005).
【23】Y. Wang and J. J. Santiago-Avilés, Low-temperature electronic properties of electrospun PAN-derived crbon nanofiber, IEEE Transactions On Nanotechnology 3, 221 (2004).
【24】Y. Wang, I. Ramos, R. Furlan, and J. J. Santiago-Avilés, Electronic transport properties of incipient gaphitic dmains formation in PAN derived carbon nanofibers, IEEE Transactions on Nanotechnology 3, 80 (2004).
【25】Y. Wang, S. Serrano, J. J. Santiago- Avilés, Conductivity measurement of electrospun PAN-based carbon nanofiber, Journal of materials science letter 12, 1055 (2002).
【26】Chan Kim, Kap-Seung Yang, and Wan-Jin Lee, The Use of Carbon Nanofiber Electrodes Prepared by Electrospinning for Electrochemical Supercapacitors, Electrochemical and Solid-Staye Letters 7, A397 (2004).
【27】W. Kataphinan, S. Dabney, D. Smith, D. H. Reneker, New Frontiers in Fiber Science, Spring Meet-May, (2001).
【28】D. Ziegler, K. J. Senecal, C. Drew, L. Samuelson, New Frontiers in Fiber Science, Spring Meet-May, (2001).
【29】Q. B. Yang, D. M. Li, Y. L. Hong, Z.Y. Li, C. Wang, S. L. Qiu, Y. Wei, Preparation and characterization of a PAN nanofibre containing Ag nanoparticles via electrospinning, Synthetic Metals 137, 973 (2003).
【30】Z. Li, H. Huang, T. Shang, F. Yang, W. Zheng, C. Wang and S. K. Manohar, Facile synthesis of single-crystal and controllable sized silver nanoparticles on the surfaces of polyacrylonitrile nanofibres, Nanotechnology 17, 917 (2006).
【31】Y. Wang, Q. Yang, G. Shan, C. Wang, J. Du, S. Wang, Y. Li, X. Chen, X. Jing, Y. Wei, Preparation of silver nanoparticles dispersed in polyacrylonitrile nanofiber film spun by electrospinning, Materials Letters 59, 3046 (2005).
【32】H. Hou, J. J. Ge, J. Zeng, Q. Li, D. H. Reneker, A. Greiner, and S. Z. D. Cheng, Electrospun Polyacrylonitrile Nanofibers Containing a High Concentration of Well-Aligned Multiwall Carbon Nanotubes, Chem. Mater. 17, 967 (2005).
【33】E. J. Ra, K. H. An, K. K. Kim, S. Y. Jeong, Y. H. Lee, Anisotropic electrical conductivity of MWCNT/PAN nanofiber paper, Chemical Physics Letters 413, 188 (2005).
【34】J. J. Ge, H. Hou, Q. Li, M. J. Graham, A. Greiner, D. H. Reneker, F. W. Harris, and S. Z. D. Cheng, Assembly of Well-Aligned Multiwalled Carbon Nanotubes in Confined Polyacrylonitrile Environments: Electrospun Composite Nanofiber Sheets, J. Am. Chem. Soc. 126, 15754 (2004).
【35】S. Iijma, Nature 56, 354 (1991).
【36】H. Hou and D. H. Reneker, Carbon Nanotubes on Carbon Nanofibers A Novel Structure Based on Electrospun Polymer Nanofibers, Adv. Mater. 16, 69 (2004).
【37】E. Zussman, A. L. Yarin, A. V. Bazilevsky, R. Avrahami, and M. Feldman, Electrospun Polyacrylonitrile/Poly(methyl methacrylate)-Derived Turbostratic Carbon Micro-/Nanotubes, Advanced Materials 18, 348 (2006).
【38】J. H. Yu, S. V. Fridrikh, and C. C. Rutledge, Producyion of Submicrometer Diameter Fibers by Two-Fluid Electrospinning, Adv. Mater. 16,1562 (2004).
【39】Z. -M. Huang, Y. -Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Compos. Sci. Technol. 63, 2223 (2003).
【40】J. A. Matthews, G. E. Wnek, D. G. Simpson, G. L. Bowlin, Electrospinning of collagen nanofibers, Biomacromolecules 3, 232 (2002).
【41】A. Theron, E. Zussman, A. L. Yarin, Electrostatics field-assisted alignment of electrospun nanofibres, Nanotechnology 12, 384 (2001).
【42】E. Zussman, A. Theron, A. L. Yarin, Formation of nanofiber crossbar in electrospinning, Appl. Phys. Lett. 82, 973 (2003).
【43】R. Inai, M. Kotaki, S. Ramakrishna, Structure and properties of electrospun PLLA single nanofibres, Nanotechnology 16, 208 (2005).
【44】D. Li, Y. Wang, Y. Xia, Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays, Nano Letters 3, 1167 (2003).
【45】S. Koombhongse, W. Liu, D. H. Reneker, Flat polymer ribbons and other shapes by electrospinning, J. Polym. Sci., B, Polym. Phys. Ed. 39, 2598 (2001).
【46】M. Bognitzki, W. Czado, T. Frese, A. Schaper, M. Hellwig, M. Steinhart, A. Greiner, J. H. Wendorff, Nanostructured fiber via electrospinning, Adv. Mater. 13, 70 (2001).
【47】S. Magelski, J. S. Stephens, D. B. Chase, J. F. Rabolt, Micro- and nanostructured surface morphology on electrospun polymer fibers, Macromolecules 35, 8456 (2002).
【48】C. L. Casper, J. S. Stephens, N. G. Tassi, D. B. Chase, J. F. Rabolt, Controlling surface morphology of electrospun polystyrene fibers:effect of humidity and molecular weight in the electrospinning process, Macromolecules 37, 573 (2004).
【49】H. Liu, Y.-L. Hsieh, Ultrafine fibers cellulose membrances from electrospinning of cellulose acetate, J. Polym. Sci., B, Polym. Phys. Ed. 40, 2119 (2002).
【50】K. H. Lee, H. Y. Kim, Y. J. Ryu, K. W. Kim, S. W. Choi, Mechanical behavior of electrospun fiber mats of poly(vinyl chloride)/polyurethane polyblends, J. Polym. Sci., B, Polym. Phys. Ed. 41, 1256 (2003).
【51】K. H. Lee, H. Y. Kim, Y. M. LA, D. R. Lee, N. H. Sung, Influence of a mixing solvent with tetrahydrofuran and n,n-dimethylformamide on electrospun poly(vinyl chloride) nonwoven mats, J. Polym. Sci., B, Polym. Phys. Ed. 40, 2259 (2002).
【52】G. Larsen, R. Spretz, R. Velarde-Ortiz, Use of coaxial gas jackets to stabilize Taylor Cone of volatile solutions and to induce particle-to-fiber transitions, Adv. Mater. 16, 166 (2004).
【53】S. L. Shenoya, W. D. Batesa, H. L. Frischb, G. E. Wnek, Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer–polymer interaction limit, Polymer 46, 3372 (2005).
【54】P. Guptaa, C. Elkinsb, T. E. Longb, G. L. Wilkes, Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent, Polymer 46, 4799 (2005).
【55】M. G. McKee, G. L. Wilkes, R. H. Colby, and T. E. Long, Correlations of Solution Rheology with Electrospun Fiber Formation of Linear and Branched Polyesters, Macromolecules 37, 1760 (2004).
【56】C. J. Buchko, L. C. Chen, Y. Shen, D. C. Martin, Processing and microstructural characterization of porous biocompatible protein polymer thin films, Polymer 40, 7397 (1999).
【57】M. Sakai, T. Fujimoto, M. Nagasawa, Macromolecules, 5,786(1972).
【58】R. Russo, An alternative method for the determination of the birefringence in stretched polymeric films, Polym. Testing 20, 283 (2001).
【59】林健樺,以電紡絲製備聚苯乙烯纖維膜,成功大學,民國92年。
【60】洪崇豪,以電紡絲製備彈性奈米SBS纖維膜,成功大學,民國92年。
【61】林坤賢,以電紡絲製備聚苯噁唑纖維,成功大學,民國93年。
【62】黃怡慧,以電紡絲製備聚羥基丁酸酯,成功大學,民國93年。