簡易檢索 / 詳目顯示

研究生: 鄒承佑
Tsou, Cheng-You
論文名稱: 藉由烏龍茶萃取液綠色合成奈米金/銀粒子的新方法
A New Green Synthesis Method to Produce Gold/Silver Nanoparticles Using Oolong Tea Extract.
指導教授: 楊瑞珍
Yang, Ruey-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 35
中文關鍵詞: 綠色合成烏龍茶硝酸銀奈米銀粒子
外文關鍵詞: Biosynthesis, Oolong tea, Silver nanoparticles, AgNPs, AuNPs
相關次數: 點閱:123下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以烏龍茶內的有機化合物做為綠色合成奈米金/銀粒子的還原劑,並以硝酸銀/四氯金酸水溶液做前驅物,先驗證烏龍茶萃取液在生產奈米金/銀粒子上的穩定性,並首次提出以稀釋的方法來改善綠色合成中,如無添加保護劑造成粒徑過大,放置數天便會產生肉眼可見金屬氧化物沉澱等問題,且以此稀釋方法生產的奈米銀溶液,其多分散性指數 (Polydispersity Index, PDI) 約在0.2左右,且平均粒度小於50 nm,其品質已能媲美標準樣品。

    In this study, the organic compounds in Oolong tea were served as green reduction agents for the biosynthesis of gold/silver nanoparticles (AuNPs/AgNPs). Simultaneously tetrachloroauric acid/silver nitrate solution was used as a precursor. The first step is to confirm the stability of using Oolong tea extract to produce AgNPs/AuNPs. We proposed a dilution method to the biosynthesis. The method improves the flaw of large particle size and visible metal oxide precipitation caused by no protective agents. The produced AgNPs/AuNPs via the dilution method has a polydispersity index (PDI) about 0.2 and an average particle size less than 50 nm, which has a comparable quality to standard samples.

    中文摘要I SUMMARY II 致謝XI 目錄XII 圖目錄XV 表目錄XVII 縮寫表XVIII 第一章緒論1 1.1簡介1 1.2奈米銀2 1.3文獻回顧5 1.4研究動機8 1.5研究架構8 第二章原理9 2.1綠色合成奈米粒子9 2.2表面電漿共振11 第三章實驗材料與方法13 3.1材料與試劑13 3.1.1茶萃取液13 3.1.2硝酸銀13 3.1.3四氯金酸13 3.1.4微流道晶片13 3.2儀器14 3.2.1紫外光可見光分光光譜儀14 3.2.2動態光散射儀14 3.2.3針筒幫浦15 3.2.4雷射雕刻機15 3.2.5高速離心機15 3.2.6超純水製造機15 3.3實驗方法20 3.3.1硝酸銀初始濃度20 3.3.2茶萃取液的量20 3.3.3空氣接觸面積20 3.3.4稀釋方法20 3.3.5成核時間20 3.3.6稀釋倍率21 3.3.7微流道21 第四章結果與討論23 4.1合成奈米銀23 4.1.1硝酸銀初始濃度23 4.1.2茶萃取液的量23 4.1.3空氣接觸面積23 4.2稀釋方法27 4.2.1稀釋方法27 4.2.2稀釋時間27 4.2.3稀釋倍率28 4.3微流道30 第五章結論32 參考文獻33

    [1]Birringer, R., Gleiter, H., Klein, H.P., and Marquardt, P., Nanocrystalline materials an approach to a novel solid structure with gas-like disorder? Physics Letters A, 1984. 102(8): p. 365-369 %@ 0375-9601.
    [2]世界材料網, 全球奈米銀市場與應用發展趨勢分析. 2014.
    [3]郭清癸, 黃俊傑, and 牟中原, 金屬奈米粒子的製造. 物理雙月刊, 2001. 23(6): p. 614-624.
    [4]Ajitha, B., Reddy, Y.A., and Reddy, P.S., Biosynthesis of silver nanoparticles using Momordica charantia leaf broth: Evaluation of their innate antimicrobial and catalytic activities. J Photochem Photobiol B, 2015. 146: p. 1-9.
    [5]Rivera-Rangel, R.D., González-Muñoz, M.P., Avila-Rodriguez, M., Razo-Lazcano, T.A., and Solans, C., Green synthesis of silver nanoparticles in oil-in-water microemulsion and nano-emulsion using geranium leaf aqueous extract as a reducing agent. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018. 536: p. 60-67.
    [6]Huang, J., Zhan, G., Zheng, B., Sun, D., Lu, F., Lin, Y., Chen, H., Zheng, Z., Zheng, Y., and Li, Q., Biogenic Silver Nanoparticles byCacumen PlatycladiExtract: Synthesis, Formation Mechanism, and Antibacterial Activity. Industrial & Engineering Chemistry Research, 2011. 50(15): p. 9095-9106.
    [7]Ahmed, S., Ahmad, M., Swami, B.L., and Ikram, S., A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J Adv Res, 2016. 7(1): p. 17-28.
    [8]Bindhu, M.R. and Umadevi, M., Antibacterial and catalytic activities of green synthesized silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc, 2015. 135: p. 373-8.
    [9]Ahmed, M.J., Murtaza, G., Mehmood, A., and Bhatti, T.M., Green synthesis of silver nanoparticles using leaves extract of Skimmia laureola: Characterization and antibacterial activity. Materials Letters, 2015. 153: p. 10-13.
    [10]Ahmed, S., Saifullah, Ahmad, M., Swami, B.L., and Ikram, S., Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. Journal of Radiation Research and Applied Sciences, 2016. 9(1): p. 1-7.
    [11]Baghizadeh, A., Ranjbar, S., Gupta, V.K., Asif, M., Pourseyedi, S., Karimi, M.J., and Mohammadinejad, R., Green synthesis of silver nanoparticles using seed extract of Calendula officinalis in liquid phase. Journal of Molecular Liquids, 2015. 207: p. 159-163.
    [12]Dhand, V., Soumya, L., Bharadwaj, S., Chakra, S., Bhatt, D., and Sreedhar, B., Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Mater Sci Eng C Mater Biol Appl, 2016. 58: p. 36-43.
    [13]Begum, N.A., Mondal, S., Basu, S., Laskar, R.A., and Mandal, D., Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of Black Tea leaf extracts. Colloids Surf B Biointerfaces, 2009. 71(1): p. 113-8.
    [14]Gondwal, M. and Joshi Nee Pant, G., Synthesis and Catalytic and Biological Activities of Silver and Copper Nanoparticles Using Cassia occidentalis. Int J Biomater, 2018. 2018: p. 6735426.
    [15]Logeswari, P., Silambarasan, S., and Abraham, J., Ecofriendly synthesis of silver nanoparticles from commercially available plant powders and their antibacterial properties. Scientia Iranica, 2013. 20(3): p. 1049-1054.
    [16]Shivakumar, M., Nagashree, K.L., Yallappa, S., Manjappa, S., Manjunath, K.S., and Dharmaprakash, M.S., Biosynthesis of silver nanoparticles using pre-hydrolysis liquor of Eucalyptus wood and its effective antimicrobial activity. Enzyme Microb Technol, 2017. 97: p. 55-62.
    [17]Sondi, I. and Salopek-Sondi, B., Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci, 2004. 275(1): p. 177-82.
    [18]Khatami, M., Mortazavi, S.M., Kishani-Farahani, Z., Amini, A., Amini, E., and Heli, H., Biosynthesis of Silver Nanoparticles Using Pine Pollen and Evaluation of the Antifungal Efficiency. Iran J Biotechnol, 2017. 15(2): p. 95-101.
    [19]Kim, D.-Y., Saratale, R.G., Shinde, S., Syed, A., Ameen, F., and Ghodake, G., Green synthesis of silver nanoparticles using Laminaria japonica extract: Characterization and seedling growth assessment. Journal of Cleaner Production, 2018. 172: p. 2910-2918.
    [20]Larue, C., Castillo-Michel, H., Sobanska, S., Cecillon, L., Bureau, S., Barthes, V., Ouerdane, L., Carriere, M., and Sarret, G., Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation. J Hazard Mater, 2014. 264: p. 98-106.
    [21]Kathiravan, V., Ravi, S., and Ashokkumar, S., Synthesis of silver nanoparticles from Melia dubia leaf extract and their in vitro anticancer activity. Spectrochim Acta A Mol Biomol Spectrosc, 2014. 130: p. 116-21.
    [22]Kiruba Daniel, S.C.G., Julius, L.A.N., and Gorthi, S.S., Microfluidics based Handheld Nanoparticle Synthesizer. Journal of Cluster Science, 2016. 28(3): p. 1201-1213.
    [23]Link, S. and El-Sayed, M.A., Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. The Journal of Physical Chemistry B, 1999. 103(21): p. 4212-4217 %@ 1520-6106.
    [24]Oldenburg, S.J., Silver Nanoparticles: Properties and Applications.
    [25]Swinehart, D.F., The beer-lambert law. Journal of chemical education, 1962. 39(7): p. 333 %@ 0021-9584.
    [26]Ireland, N.B.I.P., Dynamic Light Scattering. (http://www.nbip.dcu.ie/papers/DLS.pdf)

    無法下載圖示 校內:2022-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE