簡易檢索 / 詳目顯示

研究生: 劉致延
Liu, Zhi-Yan
論文名稱: 探討奈米球鏡微影術製作之多聚體結構的法諾共振與光學親手性
Fano Resonance and Optical Chirality of Oligomers Fabricated by Nanospherical-Lens Lithography
指導教授: 張世慧
Chang, Shih-Hui
共同指導教授: 張允崇
Chang, Yun-Chorng
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 104
中文關鍵詞: 多聚體法諾共振奈米球鏡微影術光學親手性
外文關鍵詞: Oligomers, Fano Resonance, Nanospherical-Lens Lithography, Optical Chirality
相關次數: 點閱:79下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 從超穎材料中多聚體的文獻中發現,光譜具有法諾共振的不對稱線型,此現象伴隨光譜的低穿透與反射特性可應用於電磁感應透明(EIT),且法諾共振對於介質變化的敏感度,亦使其具備環境介質感測的應用潛力。論文中以奈米球鏡微影術(NLL)取代電子術微影(EBL)並成功製作出奈米尺度的五聚體與七聚體結構。以實驗量測光譜搭配FDTD模擬的光譜與模態分析,表明該五聚體的法諾共振是來自於四聚體與線型三聚體的模態干涉;同時NLL技術因具有可三維堆疊的製程特性,可製作出具光學親手性(OC)特性的傾斜間隙結構,透過FDTD模擬,探討堆疊型的多聚體結構之光學親手性,結果表明傾斜間隙中具有OC值放大之效果,而多聚體結構必須為非對稱排列才具有光學親手性。

    Fano resonances in oligomers can be applied in electromagnetically induced transparency (EIT) and refractive index sensing. We use nanospherical-lens lithography(NLL) replacing electron beam lithography(EBL) to fabricate pentamers and heptamers, the finite-difference time-domain(FDTD) method is used to get the simulation spectrums and the mode of oligomers. The experiment spectrum of oligomers matchs well with FDTD simulation. Mode analysis shows the Fano resonances in pentamers are caused by mode interference between tetramer and linear trimer.
    Furthermore, slant-stack oligomers also can be fabricated by NLL. We use FDTD simulation to analyze the optical chirality(OC) of slant-stack oligomers. The result shows there is no optical chirality enhancement in symmetry oligomers. At last, we find there is great OC enhancement in L-shape trimer, and slant-stack can enhance the overall OC of this structure in long wavelength region.

    口試委員審定書 I 中文摘要 II Abstract III 誌謝 VIII 第一章 序論 1 1.1 奈米結構的法諾共振(Fano resonance) 1 1.2 奈米球鏡微影術(Nanospherical-lens Lithography, NLL) 8 1.3 傾斜間隙結構的光學親手性(Optical chirality, OC) 12 1.4 研究動機與本文內容 13 第二章 研究背景與實驗儀器 14 2.1 表面電漿共振(Surface plasmon resonance, SPR) 14 2.2 法諾共振(Fano resonance) 16 2.3 奈米球自組裝儀器架構 21 2.4 曝光系統架購 22 2.5 電漿蝕刻系統—氧電漿蝕刻 23 2.6 高真空薄膜鍍膜系統 24 2.7 場發射式掃描式電子顯微鏡 26 2.8 紫外光-可見光-近紅外光光譜儀 27 第三章 數值模擬方法與實驗架構 28 3.1 有限時域差分法(Finite-difference time-domain, FDTD)簡介 28 3.2 馬克士威方程式與FDTD數值計算 30 3.2.1 馬克士威方程式 30 3.2.2 有限差分法 32 3.2.3 有限時域差分法(FDTD)推導 33 3.3 完美匹配層(Perfectly matched layer, PML) 41 3.4 金屬材料—杜魯德模型(Drude model) 49 3.5 模擬空間架構 52 3.6 基板製作 54 3.6.1 奈米球鏡微影 54 3.6.2 旋轉斜向蒸鍍鉻保護層與氧電漿蝕刻 55 3.7 多聚體結構製作—傾角斜向蒸鍍 56 第四章、多聚體結構製作結果與分析 57 4.1 五聚體(Pentamer)與四聚體(Tetramer) 58 4.1.1 五聚體(Pentamer) 58 4.1.2 四聚體(Tetramer) 63 4.1.3 以線型三聚體(Linear Trimer)解析五聚體(Pentamer) 67 4.2 錯疊五聚體(Slant-stack Pentamer)與小間距的四聚體 73 4.2.1 錯疊五聚體(Slant-stack Pentamer) 73 4.2.2 小間距的四聚體 80 4.3 七聚體(Heptamer)與六聚體(Hexamer) 85 4.4 多聚體結構的光學親手性 90 第五章、結論與未來展望 98 5.1 結論 98 5.2 未來展望 99 參考文獻 100

    Denkov, N., et al. "Mechanism of formation of two-dimensional crystals from latex particles on substrates." Langmuir 8.12: 3183-3190. (1992)
    Ormonde, Anjeanette D., et al. "Nanosphere Lithography: Fabrication of Large-Area Ag Nanoparticle Arrays by Convective Self-Assembly and Their Characterization by Scanning UV− Visible Extinction Spectroscopy." Langmuir 20.16: 6927-6931. (2004)
    Hulteen, John C., and Richard P. Van Duyne. "Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 13.3: 1553-1558. (1995)
    Zhang, Gang, and Dayang Wang. "Fabrication of heterogeneous binary arrays of nanoparticles via colloidal lithography." Journal of the American Chemical Society 130.17: 5616-5617. (2008)
    Choi, Yeonho, Soongweon Hong, and Luke P. Lee. "Shadow overlap ion-beam lithography for nanoarchitectures." Nano letters 9.11: 3726-3731. (2009)
    Chen, Zhigang, Allen Taflove, and Vadim Backman. "Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique." Optics express 12.7: 1214-1220. (2004)
    Wu, Wei, et al. "A novel self-aligned and maskless process for formation of highly uniform arrays of nanoholes and nanopillars." Nanoscale research letters 3.3: 123. (2008)
    Wu, Wei, et al. "Fabrication of large area periodic nanostructures using nanosphere photolithography." Nanoscale research letters 3.10: 351. (2008)
    Chang, Yun-Chorng, et al. "High-throughput nanofabrication of infra-red and chiral metamaterials using nanospherical-lens lithography." Scientific reports 3: 3339. (2013)
    Chang, Yun-Chorng, et al. "A large-scale sub-100 nm Au nanodisk array fabricated using nanospherical-lens lithography: a low-cost localized surface plasmon resonance sensor." Nanotechnology 24.9: 095302. (2013)
    Chang, Yun-Chorng, et al. "Observation of absorption-dominated bonding dark plasmon mode from metal–insulator–metal nanodisk arrays fabricated by nanospherical-lens lithography." ACS nano 6.4: 3390-3396. (2012)
    Lynch, David W., and W. R. Hunter. "Comments on the Optical Constants of Metals and an Introduction to the Data for Several Metals." Handbook of optical constants of solids. 275-367. (1997)
    Fano, Ugo. "Effects of configuration interaction on intensities and phase shifts." Physical Review 124.6: 1866. (1961)
    Joe, Yong S., Arkady M. Satanin, and Chang Sub Kim. "Classical analogy of Fano resonances." Physica Scripta 74.2: 259. (2006)
    Luk'yanchuk, Boris, et al. "The Fano resonance in plasmonic nanostructures and metamaterials." Nature materials 9.9: 707. (2010)
    Fan, Shanhui. "Sharp asymmetric line shapes in side-coupled waveguide-cavity systems." Applied Physics Letters 80.6: 908-910. (2002)
    Tribelsky, Michael I., et al. "Light scattering by a finite obstacle and Fano resonances." Physical review letters 100.4: 043903. (2008)
    Miroshnichenko, Andrey E., Sergej Flach, and Yuri S. Kivshar. "Fano resonances in nanoscale structures." Reviews of Modern Physics 82.3: 2257. (2010)
    Bohm, David, and David Pines. "A collective description of electron interactions. I. Magnetic interactions." Physical Review 82.5: 625. (1951)
    Pines, David, and David Bohm. "A collective description of electron interactions: II. Collective vs individual particle aspects of the interactions." Physical Review 85.2: 338. (1952)
    Bohm, David, and David Pines. "A collective description of electron interactions: III. Coulomb interactions in a degenerate electron gas." Physical Review 92.3: 609. (1953)
    Pines, David. "A collective description of electron interactions: IV. Electron interaction in metals." Physical Review 92.3: 626. (1953)
    Fleischmann, Martin, Patrick J. Hendra, and A. James McQuillan. "Raman spectra of pyridine adsorbed at a silver electrode." Chemical Physics Letters 26.2: 163-166. (1974)
    Tribelsky, Michael I., and Boris S. Luk’yanchuk. "Anomalous light scattering by small particles." Physical review letters 97.26: 263902. (2006)
    Fedotov, V. A., et al. "Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry." Physical review letters 99.14: 147401. (2007)
    Wang, Hui, et al. "Symmetry breaking in individual plasmonic nanoparticles." Proceedings of the National Academy of Sciences 103.29: 10856-10860. (2006)
    Nordlander, Peter, et al. "Plasmon hybridization in nanoparticle dimers." Nano letters 4.5: 899-903. (2004)
    Brandl, Daniel W., Nikolay A. Mirin, and Peter Nordlander. "Plasmon modes of nanosphere trimers and quadrumers." The Journal of Physical Chemistry B 110.25: 12302-12310. (2006)
    Wang, Hui, et al. "Plasmonic nanostructures: artificial molecules." Accounts of chemical research 40.1: 53-62. (2007)
    Mirin, Nikolay A., Kui Bao, and Peter Nordlander. "Fano resonances in plasmonic nanoparticle aggregates." The Journal of Physical Chemistry A 113.16: 4028-4034. (2009)
    Hao, Feng, et al. "Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing." ACS nano 3.3: 643-652. (2009)
    Liu, Na, et al. "Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing." Nano letters 10.4: 1103-1107. (2009)
    Fan, Jonathan A., et al. "Self-assembled plasmonic nanoparticle clusters." science 328.5982: 1135-1138. (2010)
    Sonnefraud, Yannick, et al. "Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities." ACS nano 4.3: 1664-1670. (2010)
    Hentschel, Mario, et al. "Transition from isolated to collective modes in plasmonic oligomers." Nano letters 10.7: 2721-2726. (2010)
    Hentschel, Mario, et al. "Plasmonic oligomers: the role of individual particles in collective behavior." Acs Nano 5.3: 2042-2050. (2011)
    Wu, Chihhui, et al. "Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers." Nature materials 11.1: 69. (2012)
    Lassiter, J. Britt, et al. "Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability." Nano letters 10.8: 3184-3189. (2010)
    Lassiter, J. Britt, et al. "Designing and deconstructing the Fano lineshape in plasmonic nanoclusters." Nano letters 12.2: 1058-1062. (2012)
    Chang, Wei-Shun, et al. "A plasmonic Fano switch." Nano letters 12.9: 4977-4982. (2012)
    Ye, Jian, et al. "Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS." Nano letters 12.3: 1660-1667. (2012)
    Wen, Fangfang, et al. "Plasmon transmutation: inducing new modes in nanoclusters by adding dielectric nanoparticles." Nano letters 12.9: 5020-5026. (2012)
    King, Nicholas S., et al. "Fano resonant aluminum nanoclusters for plasmonic colorimetric sensing." ACS nano 9.11: 10628-10636. (2015)
    Rahmani, M., et al. "Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers." Optics express 19.6: 4949-4956. (2011)
    Rahmani, M., et al. "Influence of symmetry breaking in pentamers on Fano resonance and near-field energy localization." Optical Materials Express 1.8: 1409-1415. (2011)
    Lin, Daniel, and Jer-Shing Huang. "Slant-gap plasmonic nanoantennas for optical chirality engineering and circular dichroism enhancement." Optics express 22.7: 7434-7445. (2014)
    Verellen, Niels, et al. "Fano resonances in individual coherent plasmonic nanocavities." Nano letters 9.4: 1663-1667. (2009)
    Liu, Na, et al. "Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit." Nature materials 8.9: 758. (2009)

    下載圖示 校內:2019-01-01公開
    校外:2019-01-01公開
    QR CODE