簡易檢索 / 詳目顯示

研究生: 魏志諭
Wei, Chih-Yu
論文名稱: 氧化銦鎵薄膜電晶體之研製及其光電應用
Investigation of Indium-Gallium-Oxide (In-Ga-O) Thin Film Transistors and Optoelectronic Applications
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 99
中文關鍵詞: 薄膜電晶體光電晶體能帶工程
外文關鍵詞: thin film transistor, phototransistor, bandgap engineering
相關次數: 點閱:111下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們使用氧化銦鎵薄膜做為主動層研製薄膜電晶體及紫外光電晶體。首先,我們成長並分析氧化銦鎵薄膜,氧化銦鎵薄膜呈現非晶相結構而且具有平整均勻的表面特性。我們使用氧化銦鎵薄膜製造金半金結構的紫外光檢測器。實驗結果顯示,我們可以藉由調整氧化銦靶材的射頻濺鍍功率去改變光檢測器之導電性及截止波長。
    在實驗第二部分,我們研製氧化銦鎵薄膜電晶體。實驗結果顯示,電晶體之特性主要取決於元件通道層之元素組成。最佳元件為試片F,展現了良好的電特性,其場效載子遷移率6.5 cm2/Vs,次臨界擺幅0.33 V/decade,電流開關比5.1×106。氧化銦鎵光電晶體之截止波長隨著銦含量的增加從270 nm紅移至310 nm。其中試片F之光響應度及光響應拒斥比分別為4.8×103、0.24 A/W。
    最後一部分的實驗,我們研製雙通道層氧化銦鎵薄膜電晶體。我們使用同樣材料在同一道製程下實現了雙層結構,藉由能帶工程我們可以增進薄膜電晶體之特性。其中試片L展現了極佳的電特性,其場效載子遷移率53.2 cm2/Vs,次臨界擺幅0.19 V/decade,電流開關比3.2×107。與單通道層之氧化銦鎵電晶體相比較,雙通道層結構會增強雙通道層氧化銦鎵薄膜電晶體之光響應度。試片F之光響應度及光響應拒斥比分別為103、14.26 A/W。光響應拒斥比的衰減可歸咎於前通道層中有相對較高密度之氧空缺。

    In this thesis, we use In-Ga-O thin film as active layer to fabricate and investigate thin film transistors and UV phototransistor. Firstly, we deposit and analyze In-Ga-O thin films, and In-Ga-O thin films show amorphous structure and smooth surface. And then we realize In-Ga-O MSM UV photodetectors. It is found that we could change the conductivity and cutoff wavelength of the fabricated photodetectors by changing the RF sputtering power for the In2O3 target.
    Secondly, we fabricate In-Ga-O TFTs. The performance of the TFTs is found to be strongly dependent on the element composition of channel layer. The optimized device, sample F, exhibites a good electrical property with a μFE of 6.5 cm2/Vs, a SS of 0.33 V/decade, and an on/off current ratio of 5.1×106. The cutoff wavelength of In-Ga-O phototransistors is red-shifted from 270 to 310 nm with increase in indium content. The UV-to-visible rejection ratio and photoresponsivity of the fabricated phototransistors are 4.8×103 and 0.24 A/W in sample F.
    Lastly, we fabricate dual channel In-Ga-O TFTs. We realize bilayer structure which can be deposited in-situ with same material, and the performance of TFTs can be improved through bandgap engineering. The fabricated device, sample L, exhibites good electrical properties with a μFE of 53.2 cm2/Vs, a SS of 0.19 V/decade, and an on/off current ratio of 3.2×107. Compared with the TFTs with single In-Ga-O layer, the photoresponsivity of dual channel TFTs are enhanced by the bilayer structure. The UV-to-visible rejection ratio and photoresponsivity of the fabricated phototransistors are 103 and 14.26 A/W in sample L. Degradation in UV-to-visible rejection ratio can be attributed to the relative high density of oxygen vacancies in front channel.

    摘要 ............ I Abstract ........... II 誌謝 ............ IV Contents ............ V Figure Captions .......... VII Table Captions ........... X Chapter 1. Introduction .......... 1 1.1 Overview of Amorphous Oxide Semiconductor ..... 1 1.2 Overview of Thin Film Transistor ....... 2 1.3 Overview of Ultraviolet Photosensor ...... 3 1.4 Organization of Thesis ......... 4 Reference ........... 6 Chapter 2. Fundamental of Oxide Semiconductor, Thin Film Transistor and Phototransistor .......... 10 2.1 Indium-Gallium-Oxide ......... 10 2.1.1 Gallium Oxide (Ga2O3) ........ 10 2.1.2 Indium Oxide (In2O3) ......... 11 2.1.3 Electronic Properties of Indium-Gallium-Oxide (In-Ga-O) ... 11 2.2 Thin Film Transistor ......... 13 2.3 Phototransistor .......... 15 2.4 Radio-Frequency Sputtering System....... 15 Reference ........... 20 Chapter 3. Analysis of In-Ga-O Thin Films ....... 23 3.1 Introduction ........... 23 3.2 Fabrication of In-Ga-O Thin Films and Photodetectors .... 24 3.3 Analysis of In-Ga-O Thin Films ....... 25 3.3.1 Physical Analysis .......... 25 3.3.2 Electro-Optical Characteristics ....... 26 Reference ........... 38 Chapter 4. In-Ga-O TFTs and Phototransistors ...... 40 4.1 Introduction ........... 40 4.2 Fabrication of In-Ga-O Thin Film Transistors ...... 41 4.3 Current-Voltage (I-V) Characteristics of In-Ga-O Thin Film Transistors …. 42 4.4 Photoresponse of In-Ga-O Phototransistors ...... 45 Reference ........... 72 Chapter 5. Dual-Channel In-Ga-O TFTs and Phototransistors .... 75 5.1 Introduction ........... 75 5.2 Fabrication of Dual-Channel In-Ga-O Thin Film Transistors .... 76 5.3 Current-Voltage (I-V) Characteristics of Dual-Channel In-Ga-O Thin Film Transistors ............ 77 5.4 Photoresponse of Dual-Channel In-Ga-O Phototransistors ... 78 Reference ........... 94 Chapter 6. Conclusion and Future work ...... 96 6.1 Conclusion .......... 96 6.2 Future work ........... 97 Reference ........... 98 Publication List .......... 99

    Reference in chapter 1
    [1] J. L. Hou, S. J. Chang, M. C. Chen, C. H. Liu, T. J. Hsueh, J. K. Sheu, and S. Li, “GaN-Based Planar p-i-n Photodetectors with the Be-Implanted Isolation Ring,” IEEE Tran. Electron Dev., vol. 60, no. 3, pp. 1178-1182, 2013.
    [2] Z. D. Huang, W. Y. Weng, S. J. Chang, Y. F. Hua, C. J. Chiu, T. J. Hsueh, and S. L. Wu, “InGaN/GaN Multiquantum-Well Metal-Semiconductor-Metal Photodetectors with Belta-Ga2O3 Layers,” IEEE Sensors J., vol. 13, no. 4, pp. 1187-1191, 2013.
    [3] K. H. Lee, P. C. Chang, S. J. Chang, and S. L. Wu, “GaN-Based Schottky Barrier Ultraviolet Photodetector with a 5-pair AlGaN-GaN Intermediate Layer,” Phys. Status Solidi A, vol. 209, no. 3, pp. 579-584, 2012.
    [4] A. BenMoussa, J. F. Hochedez, U. Schuehle, W. Schmutz, K. Haenen, Y. Stockman, A. Soltani, F. Scholze, U. Kroth, V. Mortet, A. Theissen, C. Laubis, M. Richter, S. Koller, J. M. Defise, and S. Koizumi, “Diamond Detectors for LYRA, the Solar VUV Radiometer on Board PROBA2,” Diamond Relat. Mater., vol. 15, no. 4-8, pp. 802-806, 2006.
    [5] W. Y. Weng, S. J. Chang, C. L. Hsu, T. J. Hsueh, and S. P. Chang, “A Lateral ZnO Nanowire Photodetector Prepared on Glass Substrate,” J. Electronchem. Soc., vol. 157, no. 2, pp. K30-K33, 2010.
    [6] W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and S. P. Chang, “A Solar-Blind β-Ga2O3 Nanowire Photodetector,” IEEE Photon. Tech. Lett., vol. 22, no. 10, pp. 709-711, 2010.
    [7] D. Shao, L. Qin, and S. Sawyer, “High Responsivity, Bandpass Near-UV Photodetector Fabricated from PVA-In2O3 Nanoparticles on a GaN Substrate,” IEEE Photon. J., vol. 4, no. 3, pp. 715-720, 2012.
    [8] J. Jia, Y. Torigoshi, E. Kawashima, F. Utsuno, K. Yano, and Y. Shigesato, “Amorphous Indium-Tin-Zinc Oxide Films Deposited by Magnetron Sputtering with Various Reactive Gases: Spatial Distribution of Thin Film Transistor Performance,” Appl. Phys. Lett., vol. 106, no. 2, Art. ID 023502, 2015.
    [9] Y. R. Denny, S. Seo, K. Lee, S. K. Oh, H. J. Kang, S. Heo, J. G. Chung, J. C. Lee, and S. Tougaard, “Effects of Cation Compositions on the Electronic Properties and Optical Dispersion of Indium Zinc Tin Oxide Thin Films by Electron Spectroscopy,” Mater. Res. Bull., vol. 62, pp. 222-231, 2015.
    [10] R. Martins, P. Almeida, P. Barquinha, L. Pereira, A. Pimentel, I. Ferreira, and E. Fortunato, “Electron Transport and Optical Characteristics in Amorphous Indium Zinc Oxide Films,” J. Non-Cryst. Solids, vol. 352, no. 9-20, pp. 1471-1474, 2006.
    [11] T. Kamiya, and H. Hosono, “Material Characteristics and Applications of Transparent Amorphous Oxide Semiconductors,” NPG Asia Mater., vol. 2, no. 1, pp. 15-22, 2010.
    [12] T. Y. Hsieh, T. C. Chang, T. C. Chen, Y. C. Chen, Y. T. Chen, P. Y. Liao, A. K. Chu, W. W. Tsai, W. J. Chiang, and J. Y. Yan, “Application of in-Cell Touch Sensor Using Photo-Leakage Current in Dual Gate a-InGaZnO Thin-Film Transistors,” Appl. Phys. Lett., vol. 102, no. 21, Art. ID 212104, 2012.
    [13] S. E. Ahn, I. Song, S. Jeon, Y. W. Jeon, Y. Kim, C. Kim, B. Ryu, J. H. Lee, A. Nathan, S. Lee, G. T. Kim, and U. I. Chung, “Metal Oxide Thin Film Phototransistor for Remote Touch Interactive Displays,” Adv. Mater., vol. 24, no. 19, pp. 2631-2636, 2012.
    [14] Y. J. Tak, D. H. Yoon, S. Yoon, U. H. Choi, M. M. Sabri, B. D. Ahn, and H. J. Kim, “Enhanced Electrical Characteristics and Stability via Simultaneous Ultraviolet and Thermal Treatment of Passivated Amorphous In−Ga−Zn−O Thin-Film Transistors,” ACS Appl. Mater. Interfaces, vol. 6, no. 9, pp. 6399-6405, 2014.
    [15] H. Oh, S. M. Yoon, M. K. Ryu, C. S. Hwang, S. Yang, and S. H. Ko Park, “Transition of Dominant Instability Mechanism Depending on Negative Gate Bias under Illumination in Amorphous In-Ga-Zn-O Thin Film Transistor,” Appl. Phys. Lett., vol. 98, no. 3, Art. ID 033504, 2011.
    [16] P. K. Weimer, H. Borkan, G. Sadasiv, L. Meray-Horvath, and F. V. Shallcross, “Integrated Circuits Incorporating Thin-Film Active and Passive Elements,” Proc. IEEE, vol. 52, no. 12, pp.1479-1486, 1964.
    [17] J. T. Lin, and K. D. Huang, “A High-Performance Polysilicon Thin-Film Transistor Built on a Trenched Body,” IEEE Trans. Electron Dev., vol. 55, no. 9, pp. 2417-2422, 2008.
    [18] G. R. Chaji, S. Alexander, A. Nathan, and C. Church, “A Low-Cost Stable Amorphous Silicon AMOLED Display with Full VT- and VOLED Shift Compensation,” SID Int. Symp. Dig. Tech., vol. 38, no. 1, pp. 1580-1583, 2007.
    [19] S. H. Kim, W. M. Yoon, M. Jang, H. Yang, J. J. Park, and C. E. Park, “Damage-Free Hybrid Encapsulation of Organic Field-Effect Transistors to Reduce Environmental Instability,” J. Mater. Chem., vol. 22, no. 16, pp. 7731-7738, 2012.
    [20] E. M. C. Fortunato, P. M. C. Barquinha, A. C. M. B. G. Pimentel, A. M. F. Gonçalves, A. J. S. Marques, L. M. N. Pereira, and R. F. P. Martins, “Fully Transparent ZnO Thin-Film Transistor Produced at Room Temperature,” Adv. Mater., vol. 17, no. 5, pp. 590-594, 2005.
    [21] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, “Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor,” Science, vol. 300, no. 5623, pp. 1269-1272, 2003.
    [22] C. R. M. Grovenor, “Grain Boundaries in Semiconductors,” J. Phys. C, vol. 18, no. 21, pp. 4079-4119, 1985.
    [23] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-Temperature Fabrication of Transparent Flexible Thin-Film Transistors Using Amorphous Oxide Semiconductors,” Nature, vol. 432, no. 7016, pp. 488-492, 2004.
    [24] J. K. Jeong,J. H. Jeong, H. W. Yang, J. S. Park, Y. G. Mo, and H. D. Kim, “High Performance Thin Film Transistors with Cosputtered Amorphous Indium Gallium Zinc Oxide Channel,” Appl. Phys. Lett., vol. 91, no. 11, Art. ID 113505, 2007.
    [25] B. Yaglioglu, H. Y. Yeom, R. Beresford, and D. C. Paine, “High-Mobility Amorphous In2O3–10 wt % ZnO Thin Film Transistors,” Appl. Phys. Lett., vol. 89, no. 6, Art. ID 062103, 2006.
    [26] J. Liu, D. B. Buchholz, R. P. H. Chang, A. Facchetti, and T. J. Marks, “High-Performance Flexible Transparent Thin-Film Transistors Using a Hybrid Gate Dielectric and an Amorphous Zinc Indium Tin Oxide Channel,” Adv. Mater., vol. 22, no. 21, pp. 2333-2337, 2010.
    [27] G. Chaji, A. Nathan, and Q. Pankhurst, “Merged Phototransistor Pixel with Eenhanced near Infrared Response and Flicker Noise Reduction for Biomolecular Imaging,” Appl. Phys. Lett., vol. 93, no. 20, Art. ID 203504, 2008.
    [28] S. E. Ahn, S. Jeon, Y. W. Jeon, C. Kim, M. J. Lee, C. W. Lee, J. Park, I. Song, A. Nathan, S. Lee, and U. I. Chung, “High-Performance Nanowire Oxide Photo-Thin Film Transistors,” Adv. Mater., vol. 25, no. 39, pp. 5549-5554, 2013.
    [29] A. Star, Y. Lu, K. Bradley, and G. Grüner, “Nanotube Optoelectronic Memory Devices,” Nano Lett., vol. 4, no. 9, pp.1587-1591, 2004.
    [30] Y. Huang, and R. I. Hornsey, “Current-Mode CMOS Image Sensor Using Lateral Bipolar Phototransistors,” IEEE Trans. Electron Dev., vol. 50, no. 12, pp. 2570-2573, 2003.
    [31] T. Pal, M Arif, and S. I Khondaker, “High Performance Organic Phototransistor Based on Regioregular Poly(3-hexylthiophene),” Nanotechnology, vol. 21, no. 32, Art. ID 325201, 2010.
    [32] T. H. Chang, C. J. Chiu, W. Y. Weng, S. J. Chang, T. Y. Tsai, and Z. D. Huang, “High Responsivity of Amorphous Indium Gallium Zinc Oxide Phototransistor with Ta2O5 Gate Dielectric,” Appl. Phys. Lett., vol. 101, no. 26, Art. ID 261112, 2012.

    Reference in chapter 2
    [1] M. Bartic, M. Ogita, M. Isai, C. L. Baban, and H. Suzuki, “Oxygen Sensing Properties at High Temperatures of β-Ga2O3 Thin Films Deposited by the Chemical Solution Deposition Method,” Appl. Phys. Lett., vol. 102, no. 2, Art. ID 023709, 2007.
    [2] S. A Lee, J. Y. Hwang, J. P. Kim, S. Y. Jeong, and C. R. Cho, “Dielectric Characterization of Transparent Epitaxial Ga2O3 Thin Film on n-GaN/Al2O3 Prepared by Pulsed Laser Deposition,” Appl. Phys. Lett., vol. 89, no. 18, Art. ID 182906, 2006.
    [3] L. Li, E. Auer, M. Liao, X. Fang, T. Zhai, U. K. Gautam, A. Lugstein, Y. Koide, Y. Bando, and D. Golberg, “Deep-Ultraviolet Solar-Blind Photoconductivity of Individual Gallium Oxide Nanobelts,” Nanoscale, vol. 3, no. 3, pp. 1120-1126, 2011.
    [4] D. Y. Guo, Z. P. Wu, Y. H. An, X. C. Guo, X. L. Chu, C. L. Sun, L. H. Li, P. G. Li, and W. H. Tang, “Oxygen Vacancy Tuned Ohmic-Schottky Conversion for Enhanced Performance in β-Ga2O3 Solar-Blind Ultraviolet Photodetectors,” Appl. Phys. Lett., vol. 105, no. 2, Art. ID 023507, 2014.
    [5] Z. D. Huang, W. Y. Weng, S. J. Chang, Y. F. Hua, C. J. Chiu, and T. Y. Tsai, “Ga2O3/GaN-Based Metal-Semiconductor-Metal Photodetectors Covered with Au Nanoparticles,” IEEE Photon. Tech. Lett., vol. 25, no. 18, pp. 1809-1811, 2013.
    [6] T. H. Chang, C. J. Chiu, S. J. Chang, T. Y. Tsai, T. H. Yang, Z. D. Huang, and W. Y. Weng, “Amorphous InGaZnO Ultraviolet Phototransistors with Double-Stack Ga2O3/SiO2 Dielectric,” Appl. Phys. Lett., vol. 102, no. 22, Art. ID 221104, 2013.
    [7] J. Zhao, X. W. Sun, and S. T. Tan, “Bandgap-Engineered Ga-Rich GaZnO Thin Films for UV Transparent Electronics,” IEEE Trans. Electron Dev., vol. 56, no. 12, pp. 2995-2999, 2009.
    [8] S. R. Thomas, G. Adamopoulos, Y. H. Lin, H. Faber, L. Sygellou, E. Stratakis, N. Pliatsikas, P. A. Patsalas, and T. D. Anthopoulos, “High Electron Mobility Thin-Film Transistors Based on Ga2O3 Grown by Atmospheric Ultrasonic Spray Pyrolysis at Low Temperatures,” Appl. Phys. Lett., vol. 105, no. 9, Art. ID 092105, 2014.
    [9] K. Ebata, S. Tomai, Y. Tsuruma, T. Iitsuka, S. Matsuzaki, and K. Yano, “High-Mobility Thin-Film Transistors with Polycrystalline In–Ga–O Channel Fabricated by DC Magnetron Sputtering,” Appl. Phys. Express, vol. 5, no. 1, Art. ID 011102, 2012.
    [10] L. Wang, Y. Yang, T. J. Marks, Z. Liu, and S. T. Ho, “Near-Infrared Transparent Electrodes for Precision Teng-Man Electro-Optic Measurements: In2O3 Thin-Film Electrodes with Tunable Near-Infrared Transparency,” Appl. Phys. Lett., vol. 87, no. 16, Art. ID 161107, 2005.
    [11] J. H. Noh, S. Y. Ryu, S. J. Jo, C. S. Kim, S. W. Sohn, P. D. Rack, D. J. Kim, and H. K. Baik, “Indium Oxide Thin-Film Transistors Fabricated by RF Sputtering at Room Temperature,” IEEE Electron Dev. Lett., vol. 31, no. 6, pp. 567-569, 2010.
    [12] S. Aikawa, T. Nabatame, and K. Tsukagoshi, “Effects of Dopants in InOx-Based Amorphous Oxide Semiconductors for Thin-Film Transistor Applications,” Appl. Phys. Lett., vol. 103, no. 17, Art. ID 172105, 2013.
    [13] Dhananjay, and C. W. Chu, “Realization of In2O3 Thin Film Transistors through Reactive Evaporation Process,” Appl. Phys. Lett., vol. 91, no. 13, Art. ID 132111, 2007.
    [14] T. Iwasaki, N. Itagaki, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and Hideo Hosono, “Combinatorial Approach to Thin-Film Transistors Using Multicomponent Semiconductor Channels: An Application to Amorphous Oxide Semiconductors in In–Ga–Zn–O System,” Appl. Phys. Lett., vol. 90, no. 24, Art. ID 242114, 2007.
    [15] M. K. Ryu, S. Yang, S. H. Ko Park, C. S. Hwang, and J. K. Jeong, “High Performance Thin Film Transistor with Cosputtered Amorphous Zn–In–Sn–O Channel: Combinatorial Approach,” Appl. Phys. Lett., vol. 95, no. 7, Art. ID 072104, 2009.
    [16] N. L. Dehuff, E. S. Kettenring, D. Hong, H. Q. Chiang, J. F. Wager, R. L. Hoffman, C. H. Park, and D. A. Keszler, “Transparent Thin-Film Transistors with Zinc Indium Oxide Channel Layer,” J. Appl. Phys., vol. 97, no. 6, Art. ID 064505, 2005.
    [17] H. Hosono, “Ionic Amorphous Oxide Semiconductors: Material Design, Carrier Transport, and Device Application,” J. Non-Cryst. Solids, vol. 352, no. 9-20, pp. 851-858, 2006.
    [18] M. Orita, H. Tanji, M. Mizuno, H. Adachi, and I. Tanaka, “Mechanism of Electrical Conductivity of Transparent InGaZnO4,” Phys. Rev. B, vol. 61, no. 3, pp. 1811-1816, 2000.
    [19] D. A. Neamen, “Semiconductor Physics and Devices: Basic Principles, 3rd ed.,” McGraw-Hill, pp. 483-498, 2003.
    [20] T. Osada, K. Akimoto, T. Sato, M. Ikeda, M. Tsubuku, J. Sakata, J. Koyama, T. Serikawa, and S. Yamazaki, “Development of Liquid Crystal Display Panel Integrated with Drivers Using Amorphous In–Ga–Zn-Oxide Thin Film Transistors,” Jpn. J. Appl. Phys., vol. 49, no. 3s, 2010.
    [21] B. G. Streetman, and S. K. Banerjee, “Solid State Electronic Devices, 6th ed.,” Pearson Prentice Hall, pp. 299-301, 2005.

    Reference in chapter 3
    [1] C. J. Chiu, S. P. Chang, and S. J. Chang, “High-Performance a-IGZO Thin-Film Transistor Using Ta2O5 Gate Dielectric,” IEEE Electron Dev. Lett., vol. 31, no. 11, pp. 1245-1247, 2010.
    [2] M. Dwivedi, J. Bhargava, A. Sharma, V. Vyas, and G. Eranna, “CO Sensor Using ZnO Thin Film Derived by RF Magnetron Sputtering Technique,” IEEE Sensors J., vol. 14, no. 5, pp. 1577-1582, 2014.
    [3] C. J. Chiu, W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, “Ta2O5 Solar-Blind Photodetectors,” IEEE Sensors J., vol. 11, no. 10, pp. 2372-2373, 2011.
    [4] C. J. Chiu, S. S. Shih, W. Y. Weng, S. J. Chang, Z. D. Huang and T. Y. Tsai, “Deep UV Ta2O5/Zinc-Indium-Tin-Oxide Thin Film Photo-Transistor,” IEEE Photon. Tech. Lett., vol. 24, no. 12, pp. 1018-1020, 2012.
    [5] W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, “A β-Ga2O3/GaN Hetero-Structured Solar-Blind and Visible-Blind Dual-Band Photodetector,” IEEE Sensors J., vol. 11, no. 6, pp. 1491-1492, 2011.
    [6] Y. N. Hou, Z. X. Mei, H. L. Liang, D. Q. Ye, C. Z. Gu, and X. L. Du, “Dual-Band MgZnO Ultraviolet Photodetector Integrated with Si”, Appl. Phys. Lett., vol. 102, no. 15, Art. ID 153510, 2013.
    [7] Y. Kokubun, T. Abe, and S. Nakagomi, “Sol–gel Prepared (Ga1-xInx)2O3 Thin Films for Solar-Blind Ultraviolet Photodetectors,” Phys. Status Solidi A, vol. 207, no. 7, pp. 1741-1745, 2010.
    [8] T. Oshima, and S. Fujita, “Properties of Ga2O3-Based (InxGa1–x)2O3 Alloy Thin Films Grown by Molecular Beam Epitaxy,” Phys. Status Solidi C, vol. 5, no. 9, pp. 3113-3115, 2008.
    [9] J. Tauc, R. Grigorovici, and A. Vancu, “Optical Properties and Electronic Structure of Amorphous Germanium,” Phys. Status Solidi B, vol. 15, no. 2, pp. 627-637, 1966.
    [10] P. Marie, X. Portier, and J. Cardin, “Growth and Characterization of Gallium Oxide Thin Films by Radiofrequency Magnetron Sputtering,” Phys. Status Solidi A, vol. 205, no. 8, pp. 1943-1946, 2008.
    [11] W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and S. P. Chang, “A Solar-Blind β-Ga2O3 Nanowire Photodetector,” IEEE Photon. Tech. Lett., vol. 22, no. 10, pp. 709-711, 2010.
    [12] J. Reemts, and A. Kittel, “Persistent Photoconductivity in Highly Porous ZnO Films,” J. Appl. Phys., vol. 101, no. 1, Art. ID 013709, 2007.
    [13] N Liu, G Fang, W. Zeng, H. Zhou, F. Cheng, Q. Zheng, L Yuan, X. Zou, and X Zhao, “Direct Growth of Lateral ZnO Nanorod UV Photodetectors with Schottky Contact by a Single-Step Hydrothermal Reaction,” ACS Appl. Mater. Interfaces, vol. 2, no. 7, pp. 1973-1979, 2010.
    [14] Q. H. Li, T. Gao, Y. G. Wang, and T. H. Wang, “Adsorption and Desorption of Oxygen Probed from ZnO Nanowire Films by Photocurrent Measurements,” Appl. Phys. Lett., vol. 86, no. 12, Art. ID 123117, 2005.
    [15] Y. N. Hou, Z. X. Mei, Z. L. Liu, T. C. Zhang, and X. L. Du, “Mg0.55Zn0.45O Solar-Blind Ultraviolet Detector with High Photoresponse Performance and Large Internal Gain,” Appl. Phys. Lett., vol. 98, no. 10, Art. ID 103506, 2011.
    [16] C. H. Lin, R. S. Chen, T. T. Chen, H. Y. Chen, Y. F. Chen, K. H. Chen, and L. C. Chen, “High Photocurrent Gain in SnO2 Nanowires,” Appl. Phys. Lett., vol. 93, no. 11, Art. 112115, 2008.
    [17] S. Lany, and A. Zunger, “Anion Vacancies as a Source of Persistent Photoconductivity in II-VI and Chalcopyrite Semiconductors,” Phys. Rev. B, vol. 72, no. 3-15, Art. ID 035215, 2005.

    Reference in chapter 4
    [1] D. Luo, H. Xu, M. Li, H. Tao, L. Wang, J. Peng, and M. Xu, “Effects of Etching Residue on Positive Shift of Threshold Voltage in Amorphous Indium–Zinc-Oxide Thin-Film Transistors Based on Back-Channel-Etch Structure,” IEEE Trans. Electron Dev., vol. 61, no. 1, pp. 92-97, 2014.
    [2] C. S. Fuh, P. T. Liu, W. H. Huang, and S. M. Sze, “Effect of Annealing on Defect Elimination for High Mobility Amorphous Indium-Zinc-Tin-Oxide Thin-Film Transistor,” IEEE Electron Dev. Lett., vol. 35, no. 11, pp. 1103-1105, 2014.
    [3] X. Xiao, W. Deng, S. Chi, Y. Shao, X. He, L. Wang, and S. Zhang, “Effect of O2 Flow Rate During Channel Layer Deposition on Negative Gate Bias Stress-Induced Vth Shift of a-IGZO TFTs,” IEEE Trans. Electron Dev., vol. 60, no. 12, pp. 4159-4164, 2013.
    [4] H. Q. Chiang, D. Hong, C. M. Hung, R. E. Presley, John F. Wager, C.-H Park, D. A. Keszler, and G. S. Herman, “Thin-Film Transistors with Amorphous Indium Gallium Oxide Channel Layers,” J. Vac. Sci. Tech. B, vol. 24, no. 6, pp. 2702-2705, 2006.
    [5] G. Gonçalves, P. Barquinha, L. Pereira, N. Franco, E. Alves, R. Martins, and E. Fortunato, “High Mobility a-IGO Films Produced at Room Temperature and Their Application in TFTs,” Electronchem. Solid-State Lett., vol. 13, no. 1, pp. H20-H22, 2010.
    [6] Z. Pei, H. C. Lai, J. Y. Wang, W. H. Chiang, and C. H. Chen, “High-Responsivity and High-Sensitivity Graphene Dots/a-IGZO Thin-Film Phototransistor,” IEEE Electron Dev. Lett., vol. 36, no. 1, pp. 44-46, 2015.
    [7] H. S. Choi, and S. Jeon, “Anomalous High Photoconductivity in Short Channel Indium-Zinc-Oxide Phototransistors,” Appl. Phys. Lett., vol. 106, no. 1, Art. ID 013503, 2015.
    [8] S. M. Lee, S. J. Park, K. H. Lee, J. S. Park, S. Park, Y. Yi, and S. J. Kang, “Enhanced Photocurrent of Ge-Doped InGaO Thin Film Transistors with Quantum Dots,” Appl. Phys. Lett., vol. 106, no. 3, Art. ID 031112, 2015.
    [9] C. J. Chiu, W. Y. Weng, S. J. Chang, S. P. Chang, and T. H. Chang, “A Deep UV Sensitive Ta2O5/a-IGZO TFT,” IEEE Sensors J., vol. 11, no. 11, pp. 2902-2905, 2011.
    [10] W. den Boer, A. Abileah, P. Green, T. Larsson, S. Robinson, and T. Nguyen, “Active Matrix LCD with Integrated Optical Touch Screen,” SID Int. Symp. Dig. Tech., vol. 34, no. 1, pp. 1494-1497, 2003.
    [11] B. Kumar, H. Gong, and R. Akkipeddi, “A Study of Conduction in the Transition Zone between Homologous and ZnO-Rich Regions in the In2O3–ZnO System,” J. Appl. Phys., vol. 97, no. 6, Art. ID 063706, 2005.
    [12] M. Orita, H. Tanji, M. Mizuno, H. Adachi, and I. Tanaka, “Mechanism of Electrical Conductivity of Transparent InGaZnO4,” Phys. Rev. B, vol. 61, no. 3, pp. 1811-1816, 2000.
    [13] K. J. Saji, M. K. Jayaraj, K. Nomura, T. Kamiya, and H. Hosono, “Optical and Carrier Transport Properties of Cosputtered Zn–In–Sn–O Films and Their Applications to TFTs,” J. Electronchem. Soc., vol. 155, no. 6, pp. H390-H395, 2008.
    [14] D. J. Kim, Y. S. Rim, and H. J. Kim, “Enhanced Electrical Properties of Thin-Film Transistor with Self-Passivated Multistacked Active Layers”, ACS Appl. Mater. Interfaces, vol. 5, no. 10, pp. 4190-4194, 2013.
    [15] M. A. Romeo, M. A. G. Martinez, and P. R. Herczfeld, “An Analytical Model for the Photodetection Mechanisms in High-Electron Mobility Transistors,” IEEE Trans. Microwave Theory Tech., vol. 44, no. 12, pp. 2279-2287, 1996.
    [16] P. Görrn, M. Lehnhardt, T. Riedl, and W. Kowalsky, “The Influence of Visible Light on Transparent Zinc Tin Oxide Thin Film Transistors,” Appl. Phys. Lett., vol. 91, no. 19, Art. ID 193504, 2007.
    [17] B. Ryu, H. K. Noh, E. A. Choi, and K. J. Chang, “O-Vacancy as the Origin of Negative Bias Illumination Stress Instability in Amorphous In–Ga–Zn–O Thin Film Transistors,” Appl. Phys. Lett., vol. 97, no. 2, Art. ID 022108, 2010.
    [18] N Liu, G Fang, W. Zeng, H. Zhou, F. Cheng, Q. Zheng, L Yuan, X. Zou, and X Zhao, “Direct Growth of Lateral ZnO Nanorod UV Photodetectors with Schottky Contact by a Single-Step Hydrothermal Reaction,” ACS Appl. Mater. Interfaces, vol. 2, no. 7, pp. 1973-1979, 2010.
    [19] K. Ghaffarzadeh, A. Nathan, J. Robertson, S. Kim, S. Jeon, C. Kim, U I. Chung, and J. H. Lee, “Persistent Photoconductivity in Hf–In–Zn–O Thin Film Transistors,” Appl. Phys. Lett., vol. 97, no. 14, Art. ID 143510, 2010.
    [20] S. Lee, S. Jeon, J. Robertson, and A. Nathan, “How to Achieve Ultra High Photoconductive Gain for Transparent Oxide Semiconductor Image Sensors,” IEEE IEDM Tech. Dig., pp. 24.3.1-24.3.4, 2012.
    [21] T. H. Chang, C. J. Chiu, W. Y. Weng, S. J. Chang, T. Y. Tsai, and Z. D. Huang, “High Responsivity of Amorphous Indium Gallium Zinc Oxide Phototransistor with Ta2O5 Gate Dielectric,” Appl. Phys. Lett., vol. 101, no. 26, Art. ID 261112, 2012.

    Reference in chapter 5
    [1] X. Huang, C. Wu, H. Lu, F. Ren, D. Chen, R. Zhang, and Y. Zheng, “Enhanced Bias Stress Stability of a-InGaZnO Thin Film Transistors by Inserting an Ultra-Thin Interfacial InGaZnO:N Layer,” Appl. Phys. Lett., vol. 102, no. 19, Art. ID 193505, 2013.
    [2] T. J. Ha, and A. Dodabalapur, “Photo Stability of Solution-Processed Low-Voltage High Mobility Zinc-Tin-Oxide/ZrO2 Thin-Film Transistors for Transparent Display Applications,” Appl. Phys. Lett., vol. 102, no. 12, Art. ID 123506, 2013.
    [3] B. Cho, J. Lee, H. Seo, and H. Jeon, “Electrical Stability Enhancement of the Amorphous In-Ga-Zn-O Thin Film Transistor by Formation of Au Nanoparticles on the Back-Channel Surface,” Appl. Phys. Lett., vol. 102, no. 10, Art. ID 102108, 2013.
    [4] H. J. Kim, B. G. Son, C. K. Lee, S. Y. Je, J. Y. Won, and J. K. Jeong, “Effect of Nitrous Oxide High Pressure Annealing on the Performance of Low Temperature, Soluble-Based IZO Transistors,” IEEE Electron Dev. Lett., vol. 35, no. 4, pp. 455-457, 2014.
    [5] W. H. Tseng, S. W. Fang, C. Y. Lu, H. Y. Chuang, F. W. Chang, G. Y. Lin, T. W. Chen, K. H. Ma, H. S. Chen, T. K. Chen, Y. H. Chen, J. Y. Lee, T. H. Shih, H. C. Ting, C. Y. Chen, Y. H. Lin, and H. J. Hong, “The Effect of Nitrous Oxide Plasma Treatment on the Bias Temperature Stress of Metal Oxide Thin Film Transistors with High Mobility,” Solid-State Electron., vol. 103, pp. 173-177, 2015.
    [6] L. Yuan, X. Zou, G. Fang, J. Wan, H. Zhou, and X. Zhao, “High-Performance Amorphous Indium Gallium Zinc Oxide Thin-Film Transistors With HfOxNy/HfO2/HfOxNy Tristack Gate Dielectrics,” IEEE Electron Dev. Lett., vol. 32, no. 1, pp. 42-44, 2011.
    [7] T. L. Chen, K. C. Huang, H. Y. Lin, C. H. Chou, H. H. Lin, and C. W. Liu, “Enhanced Current Drive of Double-Gate α-IGZO Thin-Film Transistors,” IEEE Electron Dev. Lett., vol. 34, no. 3, pp. 417-419, 2013.
    [8] A. H. Adl, A. Ma, M. Gupta, M. Benlamri, Y. Y. Tsui, D. W. Barlage, and K. Shankar, “Schottky Barrier Thin Film Transistors Using Solution-Processed n-ZnO,” ACS Appl. Mater. Interfaces, vol. 4, no. 3, pp. 1423-1428, 2012.
    [9] D. J. Kim, D. L. Kim, Y. S. Rim, C. H. Kim, W. H. Jeong, H. S. Lim, and H. J. Kim, “Improved Electrical Performance of an Oxide Thin-Film Transistor Having Multistacked Active Layers Using a Solution Process,” ACS Appl. Mater. Interfaces, vol. 4, no. 8, pp. 4001-4005, 2012.
    [10] X. Yu, N. Zhou, J. Smith, H. Lin, K. Stallings, J. Yu, T. J. Marks, and A. Facchetti, “Synergistic Approach to High-Performance Oxide Thin Film Transistors Using a Bilayer Channel Architecture,” ACS Appl. Mater. Interfaces, vol. 5, no. 16, pp. 7983-7988, 2013.
    [11] S. Lee, S. Jeon, J. Robertson, and A. Nathan, “How to Achieve Ultra High Photoconductive Gain for Transparent Oxide Semiconductor Image Sensors,” IEEE IEDM Tech. Dig., pp. 24.3.1-24.3.4, 2012.
    [12] B. Ryu, H. K. Noh, E. A. Choi, and K. J. Chang, “O-Vacancy as the Origin of Negative Bias Illumination Stress Instability in Amorphous In–Ga–Zn–O Thin Film Transistors,” Appl. Phys. Lett., vol. 97, no. 2, Art. ID 022108, 2010.
    [13] P. Görrn, M. Lehnhardt, T. Riedl, and W. Kowalsky, “The Influence of Visible Light on Transparent Zinc Tin Oxide Thin Film Transistors,” Appl. Phys. Lett., vol. 91, no. 19, Art. ID 193504, 2007.
    [14] K. Ghaffarzadeh, A. Nathan, J. Robertson, S. Kim, S. Jeon, C. Kim, U I. Chung, and J. H. Lee, “Persistent Photoconductivity in Hf–In–Zn–O Thin Film Transistors,” Appl. Phys. Lett., vol. 97, no. 14, Art. ID 143510, 2010.
    [15] T. H. Chang, C. J. Chiu, S. J. Chang, T. Y. Tsai, T. H. Yang, Z. D. Huang, and W. Y. Weng, “Amorphous InGaZnO Ultraviolet Phototransistors with Double-Stack Ga2O3/SiO2 Dielectric,” Appl. Phys. Lett., vol. 102, no. 22, Art. ID 221104, 2013.

    Reference in chapter 6
    [1] C. I Lin, Y. K. Fang, W. C. Chang, M. W. Chiou, C. W. Chen, “Effect of Gate Barrier and Channel Buffer Layer on Electric Properties and Transparence of the a-IGZO Thin Film Transistor,” Microelectron. Reliab., vol. 54, no. 5, 2014.
    [2] C. H. Cheng, and A. Chin, “Low-Leakage-Current DRAM-Like Memory Using a One-Transistor Ferroelectric MOSFET with a Hf-Based Gate Dielectric,” IEEE Electron Dev. Lett., vol. 35, no. 1, pp. 138-140, 2014.

    無法下載圖示 校內:2025-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE