簡易檢索 / 詳目顯示

研究生: 陳奐彰
Chen, Huang-Chang
論文名稱: 高頻血流動力學響應功能性近紅外光譜模組設計
Design of Functional Near-Infrared Spectroscopy Module for Hemodynamic Response in High Frequency
指導教授: 陳家進
Chen, Jia-Jin
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 78
中文關鍵詞: 近紅外光譜血流動力學光體積變化描記圖法
外文關鍵詞: Near-infrared spectroscopy, hemodynamic, Photoplethysmography
相關次數: 點閱:40下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 功能性近紅外光譜 (fNIRS) 系統是一種非侵入性的神經光學測量儀器,它利用近紅外光對氧合血紅蛋白 (HbO) 和去氧血紅蛋白 (Hb) 的高吸收率來推估它們在大腦中的濃度變化,用來評估大腦局部皮質對於神經活動的響應功能。通常血流動力學反應的變化在低頻段進行分析。本研究的目的是開發一種高頻率的NIRS系統來檢測更高頻率的訊號,從而提供更深入的分析。
    光極模組由兩個波長為760 nm和850 nm的LED光源組成並配有三個PIN光電二極管的柔性探頭,用於接收穿過組織後衰減的光訊號。我們定制的連續波NIRS系統的每個通道的採樣率為250 Hz,與一般的連續波NIRS系統相比,更高的採樣率提高了時間分辨率,並提供了高頻信號分析的潛力。fNIRS評估大腦功能的方式是基於局部血紅蛋白濃度變化的估計值,分析過程中去除了大部分高頻訊號,以消除其他生理訊號的影響,我們還可以嘗試使用我們的NIRS系統分析高頻訊號。
    本研究透過在指尖測量的PPG訊號和阻塞期間前臂內側肌肉和等長收縮期間二頭肌的血流動力學反應,驗證了我們的NIRS系統對血液容量變化的反應。還記錄了手指點擊和呼吸控制期間的前額葉的血流動力學反應。然後將測得的訊號與商用地NIRScout-1624進行比較。此外,使用0.5 Hz到10 Hz的帶通濾波器對呼吸控制期間的訊號進行高頻分析,將PPG訊號與低頻的血流動力學訊號分離。
    我們的研究展示了一種高頻連續波NIRS系統,用於紀錄肌肉組織和前額葉中的血流動力學反應,並能提取後續的PPG訊號。這些NIRS訊號可以用於未來的大腦神經調節和肌肉活化的評估。未來可以進一步增強微弱的血流動力學訊號並提供穩定的無限數據傳輸,開發出多樣化的探頭來滿足臨床上的應用。

    The functional near-infrared spectroscopy (fNIRS) system is a non-invasive neuro-optical measurement instrument that utilizes the differential absorption rates of near-infrared light on oxyhemoglobin (HbO) and deoxyhemoglobin (Hb) to estimate their concentration changes as a function of the brain. As a tool for assessing the function of local cortical responses to neural activity. The changes in hemodynamic responses that are commonly analyzed in the low-frequency band. The purpose of this study is to develop a high-frequency NIRS system to detect the NIRS signals at higher frequency that could provide more insight analysis.
    The optode module composed of two LEDs light source with wavelengths of 760 nm and 850 nm. A flexible optical probe of three PIN photodiodes was designed to receive the attenuated light through the tissue of different path lengths. The sampling rate of each channel of our custom-made CW-NIRS system can reach 250 Hz by careful control of analogue front end time sequence. Compared with the commercially available CW-NIRS system, the system with increased sampling rate could provide the potential of high-frequency signal in addition to low-frequency of hemodynamic response based on NIRS recordings of hemoglobin concentration changes.
    This study verified our NIRS recordings from muscle and brain hemodynamic responses. First, the experiment was designed to record changes in blood volume by measuring the Photoplethysmography (PPG) signal at the fingertip and hemodynamic responses of forearm muscle during occlusion and bicep muscle during isometric contraction. The hemodynamic responses of prefrontal lobe during finger tapping and respiratory control were also measured and processed to remove the undesired physiological signals. The signal during respiratory control was filtered using a 0.5-10 Hz bandpass filter, to separate PPG signals from low-frequency hemodynamic signal.
    Our study demonstrated a custom-made high-frequency CW-NIRS system for recording hemodynamic responses in muscle tissue and prefrontal lobe which can extract hemodynamic response and subsequent PPG signals. These NIRS measurements can be utilized for future assessment of brain neuromodulation and muscle activation. Future development can further enhance the weak hemodynamic signals and provide stable wireless data transmission for versatile probe design to meet the clinical applications.

    摘要 5 Abstract 6 誌謝 7 Contents 8 Chapter 1. Introduction 10 1.1 Introduction of near-infrared spectroscopy 10 1.1.1 Overview of functional near-infrared spectroscopy 10 1.1.2 Principles of fNIRS 10 1.1.3 Three types of fNIRS 13 1.2 Hemodynamic response function (HRF) 15 1.3 High frequency components of NIRS 16 1.4 The Aims of the study 18 Chapter 2. Materials and Methods 20 2.1 Design of NIRS system 20 2.2 Processing of hemoglobin concentration 22 2.3 FIFO acquisition and probe design 22 2.4 Experimental design 24 2.4.1 Muscle hemodynamic response 24 2.4.2 Hemodynamic response of prefrontal cortex 27 2.5 Data analysis 29 2.6 Comparison with a commercial NIRS system 31 Chapter 3. Results 33 3.1 Verification of photodetector 33 3.2 Comparison between commercialized and our high-frequency NIRS 34 3.2.1 Muscle measurements 34 3.2.2 Cerebral responses 40 3.3 Hemodynamic response of muscle tissue 48 3.3.1 Forearm occlusion 48 3.3.2 NIRS recording during isometric contraction 50 3.4 Prefrontal cortex hemodynamic response and PPG signal 52 3.4.1 Finger tapping 52 3.4.2 Breath holding 54 3.4.3 Deep breathing 59 3.4.4 Rapid breathing 64 Chapter 4. Discussion and Conclusion 70 4.1 Verification and validation of NIRS system 70 4.2 System optimization 73 4.3 Conclusion and Future works 73 References 75

    Abdelgaber, K. M., Salah, M., Omer, O. A., Farghal, A. E. A., & Mubarak, A. S. (2023). Subject-Independent per Beat PPG to Single-Lead ECG Mapping. Information, 14(7). https://doi.org/10.3390/info14070377
    Bellissimo, G., Leslie, E., Maestas, V., & Zuhl, M. (2020). The Effects of Fast and Slow Yoga Breathing on Cerebral and Central Hemodynamics. Int J Yoga, 13(3), 207-212. https://doi.org/10.4103/ijoy.IJOY_98_19
    Bhambhani, Y., Fan, J. L., Place, N., Rodriguez-Falces, J., & Kayser, B. (2014). Electromyographic, cerebral, and muscle hemodynamic responses during intermittent, isometric contractions of the biceps brachii at three submaximal intensities. Front Physiol, 5, 190. https://doi.org/10.3389/fphys.2014.00190
    Bhargav, H., Nagendra, H. R., Gangadhar, B. N., & Nagarathna, R. (2014). Frontal hemodynamic responses to high frequency yoga breathing in schizophrenia: a functional near-infrared spectroscopy study. Front Psychiatry, 5, 29. https://doi.org/10.3389/fpsyt.2014.00029
    Buxton, R. B. (2012). Dynamic models of BOLD contrast. Neuroimage, 62(2), 953-961. https://doi.org/10.1016/j.neuroimage.2012.01.012
    Charlton, P. H., & Marozas, V. (2021). Wearable Photoplethysmography Devices. In P. A. Kyriacou & J. Allen (Eds.), Photoplethysmography: Technology, Signal Analysis and Applications (1st Edition ed., pp. 506). https://doi.org/10.1016/B978-0-12-823374-0.00011-6
    Chen, W. L., Wagner, J., Heugel, N., Sugar, J., Lee, Y. W., Conant, L., Malloy, M., Heffernan, J., Quirk, B., Zinos, A., Beardsley, S. A., Prost, R., & Whelan, H. T. (2020). Functional Near-Infrared Spectroscopy and Its Clinical Application in the Field of Neuroscience: Advances and Future Directions. Front Neurosci, 14, 724. https://doi.org/10.3389/fnins.2020.00724
    Delpy, D. T., Cope, M., Zee, P. V. D., Arridge, S., Wray, S., & Wyatt, J. (1988). Estimation of optical pathlength through tissue from direct time of flight measurement. Physics in Medicine & Biology, 33(12), 1433. https://doi.org/10.1088/0031-9155/33/12/008
    Devor, A., Boas, D. A., Eineboll, G. T., Buxton, R. B., & Dale, A. M. (2012). Neuronal Basis of Non-Invasive Functional Imaging From Microscopic Neurovascular Dynamics to BOLD fMRI. Advances in Neurobiology, 4, 433-500.
    Eggebrecht, A. T., Ferradal, S. L., Robichaux-Viehoever, A., Hassanpour, M. S., Dehghani, H., Snyder, A. Z., Hershey, T., & Culver, J. P. (2014). Mapping distributed brain function and networks with diffuse optical tomography. Nat Photonics, 8(6), 448-454. https://doi.org/10.1038/nphoton.2014.107
    Ehlis, A. C., Schneider, S., Dresler, T., & Fallgatter, A. J. (2014). Application of functional near-infrared spectroscopy in psychiatry. Neuroimage, 85 Pt 1, 478-488. https://doi.org/10.1016/j.neuroimage.2013.03.067
    Firbank, M., Okada, E., & Delpy, D. T. (1998). A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses. Neuroimage, 8(1), 69-78. https://doi.org/10.1006/nimg.1998.0348
    Guerouah, Z., Lin, S., & Toronov, V. (2021). Measurement of Adult Human Brain Responses to Breath-Holding by Multi-Distance Hyperspectral Near-Infrared Spectroscopy. Applied Sciences, 12(1). https://doi.org/10.3390/app12010371
    Irani, F., Platek, S. M., Bunce, S., Ruocco, A. C., & Chute, D. (2007). Functional near infrared spectroscopy (fNIRS): an emerging neuroimaging technology with important applications for the study of brain disorders. Clin Neuropsychol, 21(1), 9-37. https://doi.org/10.1080/13854040600910018
    Jöbsis, F. F. (1977). Noninvasive, Infrared Monitoring of Cerebral and Myocardial Oxygen Sufficiency and Circulatory Parameters. Science, 198(4323), 1264-1267. https://doi.org/10.1126/science.929199
    Kocsis, L., Herman, P., & Eke, A. (2006). The modified Beer-Lambert law revisited. Phys Med Biol, 51(5), N91-98. https://doi.org/10.1088/0031-9155/51/5/N02
    Kohl, M., Nolte, C., Heekeren, H. R., Horst, S., Scholz, U., Obrig, H., & Villringer, A. (1998). Determination of the wavelength dependence of the differential pathlength factor from near-infrared pulse signals. Phys Med Biol, 43(6), 1771-1782. https://doi.org/10.1088/0031-9155/43/6/028
    Lange, F., & Tachtsidis, I. (2019). Clinical Brain Monitoring with Time Domain NIRS: A Review and Future Perspectives. Applied Sciences, 9(8). https://doi.org/10.3390/app9081612
    Licea, J., Khan, O. A., Singh, T., & Modlesky, C. M. (2023). Prefrontal cortex hemodynamic activity during a test of lower extremity functional muscle strength in children with cerebral palsy: A functional near-infrared spectroscopy study. Eur J Neurosci. https://doi.org/10.1111/ejn.16211
    Matsukawa, K., Asahara, R., Uzumaki, M., Hashiguchi, Y., Ishii, K., Wang, J., & Smith, S. A. (2021). Central command-related increases in blood velocity of anterior cerebral artery and prefrontal oxygenation at the onset of voluntary tapping. Am J Physiol Heart Circ Physiol, 321(3), H518-H531. https://doi.org/10.1152/ajpheart.00062.2021
    Mei, X., Zou, C. J., Hu, J., Liu, X. L., Zheng, C. Y., & Zhou, D. S. (2023). Functional near-infrared spectroscopy in elderly patients with four types of dementia. World J Psychiatry, 13(5), 203-214. https://doi.org/10.5498/wjp.v13.i5.203
    Naseer, N., & Hong, K. S. (2015). fNIRS-based brain-computer interfaces: a review. Front Hum Neurosci, 9, 3. https://doi.org/10.3389/fnhum.2015.00003
    Okada, E., Firbank, M., Schweiger, M., Arridge, S. R., Cope, M., & Delpy, D. T. (1997). Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head. Applied Optics, 36(1), 21-31. https://doi.org/10.1364/ao.36.000021
    Quaresima, V., & Ferrari, M. (2016). Functional Near-Infrared Spectroscopy (fNIRS) for Assessing Cerebral Cortex Function During Human Behavior in Natural/Social Situations: A Concise Review. Organizational Research Methods, 22(1), 46-68. https://doi.org/10.1177/1094428116658959
    Quiroga, A., Novi, S., Martins, G., Bortoletto, L. F., Avelar, W., Guillaumon, A. T., Li, L. M., Cendes, F., & Mesquita, R. C. (2022). Quantification of the Tissue Oxygenation Delay Induced by Breath-Holding in Patients with Carotid Atherosclerosis. Metabolites, 12(11). https://doi.org/10.3390/metabo12111156
    Reddy, P., Izzetoglu, M., Shewokis, P. A., Sangobowale, M., Diaz-Arrastia, R., & Izzetoglu, K. (2021). Evaluation of fNIRS signal components elicited by cognitive and hypercapnic stimuli. Sci Rep, 11(1), 23457. https://doi.org/10.1038/s41598-021-02076-7
    Saikia, M. J., Besio, W. G., & Mankodiya, K. (2019). WearLight: Toward a Wearable, Configurable Functional NIR Spectroscopy System for Noninvasive Neuroimaging. IEEE Trans Biomed Circuits Syst, 13(1), 91-102. https://doi.org/10.1109/TBCAS.2018.2876089
    Scholkmann, F., Kleiser, S., Metz, A. J., Zimmermann, R., Mata Pavia, J., Wolf, U., & Wolf, M. (2014). A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. Neuroimage, 85 Pt 1, 6-27. https://doi.org/10.1016/j.neuroimage.2013.05.004
    Scholkmann, F., & Wolf, M. (2013). General equation for the differential pathlength factor of the frontal human head depending on wavelength and age. J Biomed Opt, 18(10), 105004. https://doi.org/10.1117/1.JBO.18.10.105004
    Shang, Y., Zhao, Y., Cheng, R., Dong, L., Irwin, D., & Yu, G. (2009). Portable optical tissue flow oximeter based on diffuse correlation spectroscopy. Optics Letters, 34(22), 3556-3558. https://doi.org/10.1364/OL.34.003556
    Strangman, G., Boas, D. A., & Sutton, J. P. (2002). Non-invasive neuroimaging using near-infrared light. Biological Psychiatry, 52(7), 679-693. https://doi.org/10.1016/s0006-3223(02)01550-0
    Taroni, P., Comelli, D., Pifferi, A., Torricelli, A., & Cubeddu, R. (2007). Absorption of collagen: effects on the estimate of breast composition and related diagnostic implications. J Biomed Opt, 12(1), 014021. https://doi.org/10.1117/1.2699170
    Tromberg, B. J., Ganesan, G., Cotter, J., Reuland, W., Warren, R. V., Mirzaei Zarandi, S. M., Cerussi, A. E., Tromberg, B. J., Galassetti, P., Yodh, A. G., & Sevick-Muraca, E. M. (2013). Use of diffuse optical spectroscopy to monitor muscle and brain oxygenation dynamics during isometric and isokinetic exercise Optical Tomography and Spectroscopy of Tissue X,
    Villringer, A., & Chance, B. (1997). Non-invasive optical spectroscopy and imaging of human brain function. Trends in Neurosciences, 20(10), 435-442. https://doi.org/10.1016/S0166-2236(97)01132-6
    Ward, K. R., Ivatury, R. R., Barbee, R. W., Terner, J., Pittman, R., Torres Filho, I. P., & Spiess, B. (2006). Near infrared spectroscopy for evaluation of the trauma patient: a technology review. Resuscitation, 68(1), 27-44. https://doi.org/10.1016/j.resuscitation.2005.06.022
    Wu, K. C., Tamborini, D., Renna, M., Peruch, A., Huang, Y., Martin, A., Kaya, K., Starkweather, Z., Zavriyev, A. I., Carp, S. A., Salat, D. H., & Franceschini, M. A. (2022). Open-source FlexNIRS: A low-cost, wireless and wearable cerebral health tracker. Neuroimage, 256, 119216. https://doi.org/10.1016/j.neuroimage.2022.119216
    Yucel, M. A., Selb, J. J., Huppert, T. J., Franceschini, M. A., & Boas, D. A. (2017). Functional Near Infrared Spectroscopy: Enabling Routine Functional Brain Imaging. Curr Opin Biomed Eng, 4, 78-86. https://doi.org/10.1016/j.cobme.2017.09.011

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE