簡易檢索 / 詳目顯示

研究生: 何青陽
Ho, Ching-Yang
論文名稱: 比對線上缺陷檢驗與晶圓測試以改進奈米 CMOS製程良率提昇程序的時效與成本之 研究
Enhancement of Nano CMOS Technology Yield Improving Cycle Time and Cost with Matching In-line Defect Inspection and Wafer Testing
指導教授: 方炎坤
Fang, Yean-Kuen
謝明得
Shieh, Ming-Der
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系碩士在職專班
Department of Electrical Engineering (on the job class)
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 146
外文關鍵詞: Graphic Data System, Defect Density, Physical Failure Analysis, Turn Around Time, Front-End-Of-Line, Critical Dimension, Graphical User Interface, Configurable Logic Blocks, Electronic Design Automation, Design For Testability, Automatic Test Pattern Generator, Electron-Beam Inspection, Standard Operation Procedure, Back-End-Of-Line, Device Under Test, Field Programmable Gate Array
相關次數: 點閱:179下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在半導體製程中,提昇晶圓製造良率,是降低生產成本的首要課題,也是評量晶圓製造廠優劣的重要指標之一。量產產品的良率,常常因晶圓製造過程中肇因於各種塵埃,化學溶劑,光罩缺陷,..等產生的缺陷而下降。尤其是奈米製程的良率受害更大。在微米或次微米製程技術的中,有些缺陷或許不會造成晶片失效,但當製程技術進入到奈米製程,這些非常細小的defects(或 particles),卻往往成為奈米製程晶片的頭號殺手!
    在晶圓製造過程中, 以往用來提昇良率的一貫流程是利用線上缺陷檢驗系統(in-line defect inspection system)來即時偵測缺陷產生的狀況。並當晶圓製作完成,用晶圓測試機台來測試該晶圓上之晶片,以得知每個晶片的良劣及收集詳細測試資料。然後根據這些測試資料,將失效的晶片作失敗性分析(Failure Analysis)來找出造成晶片失效的缺陷,進而提供生產製造流程的改善依據。
    但是,失敗性分析既耗費時日又佔用了昂貴的儀器設備資源,而且有時甚至無法真正找出缺陷。尤其當遇到緊急的良率驟降的問題,上述之流程,更無法及時有效地提供Fab 改善製程的依據。如此有可能使晶圓製造良率出現連續性的問題。須停用某一些製造機台,嚴重者甚或必須停止生產線以等待失敗性分析的結果以做為判斷或改善的依據進如此讓工廠遭遇慘重的損失。因此吾人發展一種新穎的比對系統既可降低PFA(Physical Failure Analysis)成本及加速良率改善。
    本論文針對這種新穎的比對系統的發展作詳細的說明,並藉由一個晶圓代工廠的FPGA(Field Programmable Gate Array) 90奈米晶片生產線測試數據輸入這個系統來證明這個系統的可用性。首先吾人簡介缺陷密度模式與良率之關係,以解釋為何目前晶圓代工業界均採用缺陷密度以取代良率作為衡量標準。並介紹線上缺陷檢驗及晶圓測試機制。這兩個機制原本各自獨立運作以確保產品品質。我們利用既有線上缺陷檢驗系統資料庫所儲存之缺陷資料,加上與晶圓測試資料作比對。如此,將可在晶圓測試完成後立即得知造成晶片失效的缺陷及原因 ,大幅省卻失敗性分析的人力與儀器機台資源並且大幅改進良率提升的時效及新產品或技術的學習曲線!

    As the wafer manufacturing technology scales down to nano-meter regime, the wafer process caused tiny defects occur often. In addition, the effectively killing dimension of defects is also shrunk. Thus, the in-line defect inspection executed in the wafer manufacturing for every process and layers becomes very important. On the other hand, after finish of wafer processing, there also has a wafer testing stage. Both of the inspection and test control the quality and scrapping inside a Fab independently.
    Usually, after wafer testing, one starts the PFA (Physical Failure Analysis) by performing the TEM/SEM/FIB (Transmission Electron Microscope/Scanning Electron Microscope/Focused Ion Beam) in the failure chips to have a clear picture of the defects in these failure chips. The testing data provides us the valuable information to localize the defects and the layers which defects occurred. However, it also takes time and occupies the FA equipments resource, thus, impacting the manufacturing significantly. Especially, in case of solving an urgent event and/or serious yield problem, one needs the defect data and root causes immediately. Therefore, one needs a better solution with low cost and high efficiency for shortening the cycle time to improve the yield.
    In this thesis, we develop a methodology for the fast yield improvement and evidence its availability with a foundry’s real production line data. Firstly, the developed methodology needs to setup and align the chip information of the GDS coordination system, the reference point or alignment marks, data format and so on. In addition, for the wafer testing raw data handling, it also requires the simple scripts to convert and translate to the topological and then physical locations. Then, compares and matches the data between the in-line defect inspection and wafer testing to find the real killer defect images without extra PFA.

    English Abstract .....................................................................................I Chinese Abstract .................................................................................III Contents ...............................................................................................VI Tables Caption .....................................................................................VIII Figures Caption ...................................................................................IX Nomenclature ....................................................................................XV Chapter 1 Introduction 1.1 Motivation ..................................................................................1 1.2 Preface of Thesis ........................................................................3 Chapter 2 Basic Concepts of the Methodology 2.1 In-line Defect Inspection ............................................................5 2.2 Inspection Tools ..........................................................................6 2.2.1 Viper 2430 for Automated Defect Inspection ....................6 2.2.2 eS32 for Accelerating FEOL Innovation ...........................7 2.3 Inspection Methodologies ..........................................................8 2.4 Wafer Testing .............................................................................10 2.5 Testing tools ..............................................................................11 2.5.1 T5501 Dual-head memory test system ............................12 2.6 Introduction to Testing ..............................................................12 Chapter 3 Experiment 3.1 Objective for Experiment ..........................................................15 3.2 Inspection and Test Equipment used in the experiment ............16 3.3 Procedures of Experiment .........................................................16 3.3.1 Product Selection ..............................................................17 3.3.2 In-line Defect Inspection EDA Database ..........................17 3.3.3 Setting Up Procedures ......................................................18 3.3.4 Software Set Up ................................................................20 Chapter 4 Results and Discussion 4.1 Test System Calibration and Correlation ............................23 4.2 Test procedure for the experiment ......................................24 4.3 Test Result ,Data Conversion and Matching ......................26 4.4 The Extra work for the Non-Matched chips .......................29 Chapter 5 Conclusion and Future Work 5.1 Conclusion ...........................................................................30 5.2 Prospects ..............................................................................32 References ...............................................................................................34 Acknowledgement ..............................................................................XIV VITA .....................................................................................................XV

    [1] Parks, H.G. “Yield modeling from SRAM failure analysis,” Microelectronic Test Structures, 1990. ICMTS 1990. Proceedings of the 1990 International Conference on 5-7 P. 169 – 174, March 1990
    [2] Mughal, H.A., Eccleston, W., Stuart, R.A. “Spatial distribution of defects in SiO2,” Electronics Letters Volume 14, Issue 24, P. 761 – 762, November 23 1978
    [3] ANSLEY, W. C : 'Computation of integrated circuit yields from the distribution of slice yields for the individual devices', IEEE Trans., ED-15, P.405 – 406,1968
    [4] H.G. Parks and E.k Burke, “The Nature of Defect Size Distributions in Semiconductor Processes” International Semiconductor Manufacturing Science Symposium (ISMSS) '89 Proceedings, IEEE, Catalog Number 89CH2699-7, May 1989, Pg-131.
    [5] Stapper, C.H., “On Murphy's yield integral [IC manufacture],” Semiconductor Manufacturing, IEEE Transactions on Volume 4, Issue 4, P. 294 – 297, Nov. 1991
    [6] Zakzouk, A.K.M., “Factors affecting probability distribution and yield of silicon dioxide defects,” Communications, Speech and Vision, IEE Proceedings I [see also IEE Proceedings-Communications] Volume 129, Issue 3, P. 96, June 1982
    [7] Berglund, C.N., “A unified yield model incorporating both defect and parametric effects,” Semiconductor Manufacturing, IEEE Transactions on Volume 9, Issue 3, P. 447 – 454, Aug. 1996
    [8] Sopori, B.L.; Murphy, R.; Marshall, C., “A scanning defect-mapping system for large-area silicon substrates,” Photovoltaic Specialists Conference, 1993., Conference Record of the Twenty Third IEEE 10-14 P.190 – 194, May 1993
    [9] C. H. Stapper, “Defect density distribution for LSI yield calculations,” IEEE Trans. Electron Devices, vol. ED-20, P. 655, 1973
    [10] R. C. Leachman, Ed., “The competitive semiconductor manufacturing survey: Second report on results of the main phase,” University of California, Berkeley, CA, rep. CSM-08, 1994.
    [11] Malaiya, Y.K.; Denton, J, “Module size distribution and defect density,” Software
    Reliability Engineering, 2000. ISSRE 2000. Proceedings. 11th International Symposium on, P. 62 – 71, 8-11 Oct. 2000
    [12] Stapper, C. H., “Defect Density Distribution for LSI Yield Calculations,” IEEE
    Transactions on Electron Devices (Correspondence. ED-20, P. 655-657), 1973
    [13] Baxter, M.L.; “Monitoring and predicting defect densities in a high volume
    manufacturing facility for increasing yields,” Improving the Efficiency of IC
    Manufacturing Technology, IEE Colloquium P. 6/1 - 6/3, 12 Apr 1995
    [14] Chan, L.; Geuskens, B.; Mangaser, R.; Rose, K.; “BEOL yield predictions for SIA roadmap,” Advanced Semiconductor Manufacturing Conference and Workshop, 1997. IEEE /SEMI P. 87–90, Sept. ,10-12 1997
    [15] Baxter, M.L.; “Monitoring and predicting defect densities in a high volume manufacturing facility for increasing yields,” Improving the Efficiency of IC
    Manufacturing Technology, IEE Colloquium , P. 6/1 - 6/3, 12 Apr 1995
    [16] Hess, C.; Weiland, L.H.; “Extraction of wafer-level defect density distributions to
    improve yield prediction,” Semiconductor Manufacturing, IEEE Transactions on
    Volume 12, Issue 2, P. 175–183, May 1999
    [17] Rajkanan, K.; “Yield analysis methodology for low defectivity wafer fabs,” Memory Technology, Design and Testing, 2000. Records of the 2000 IEEE
    International Workshop , P. 65 – 69, 7-8 Aug. 2000
    [18] Miller, R.B.; Riordan, W.C.; ” Unit level predicted yield: a method of identifying
    high defect density die at wafer sort,” Test Conference, 2001. Proceedings. International , P. 1118 – 1127, 30 Oct.-1 Nov. 2001
    [19] Segal, J.; Gordon, A.; Sajoto, D.; Duffy, B.; Kumar, M., “A framework for extracting defect density information for yield modeling from in-line defect inspection for real-time prediction of random defect limited yields,” Semiconductor Manufacturing Conference Proceedings, 1999 IEEE International Symposium on, P. 403 – 406, 11-13 Oct. 1999
    [20] Nurani, R.K., Akella, R., Strojwas, A.J, “In-line Defect Sampling Methodology in Yield Management: An Integrated Framework” IEEE Transactions on
    Semiconductor Manufacturing, Vol. 9, No. 4,November 1996
    [21] Nurani, R.K., Stoller, M., Gudmundsson, D., and Shanthikumar, J.G. “Evaluating
    Inspection Strategies Using Advanced Statistical Methods”. KLA-Tencor Yield
    Management Solution, Vol.c 1, Issue3, P. 12 – 14, Spring 1999
    [22] W. Zhang, S. H. Brongersma, T. Clarysse, V. Terzieva, E. Rosseel,W. Vandervorst, and K. Maex, “Surface and grain boundary scattering studied in beveled polycrystalline thin copper films,” J. Vac. Sci. Technol., vol. B 22, no. 4, p. 1830, 2004.
    [23] K. Hinode, Y.Hanaoka, K.-I. Takeda, and S. Kondo, “Resistivity increase in ultrafine-line copper conductor for ULSIs,” Jpn. J. Appl. Phys., vol. 40, p. L1097, 2001.
    [24] Hess, C.; Weiland, L.H.; “Wafer level defect density distribution using checkerboard test structures,” Microelectronic Test Structures, 1998. ICMTS 1998., Proceedings of the 1998 International Conference on 23-26 March 1998 P. 101 – 106

    [25] T. Markas, M.Royals, and N. Kanopoulos, “On distributed fault emulation,” IEEE Computer, vol. 23, pp. 40-52, Jan. 1990
    [26] K.-T Cheng, S.-Y. Huang, and W.-J. Dai, “Fault emulation: A new approach to fault grading,” in Proc. IEEE Int. Conf. Computer-Aided Design (ICCAD, pp. 681-686), 1995
    [27] J.-H. Hong, S.-A. Hwang, and C.-W. Wu, “An FPGA-based hardware emulator for fast fault emulation, ”in Proc. Midwest Symp. Circuits Syst.,Ames, IA, Aug.1996
    [28] Xilinx, The Programmable Gate Array Data Book, Xilinx, Inc., San Jose, CA, 1996

    下載圖示 校內:2012-07-09公開
    校外:2012-07-09公開
    QR CODE