| 研究生: |
鄭家春 Zheng, Jia-Chun |
|---|---|
| 論文名稱: |
運用ANSYS FLUENT®及gPROMS®建立三維度殼管式反應器模型 Three Dimensions CFD modeling of a shell and tube reactor using ANSYS FLUENT® and gPROMS® |
| 指導教授: |
吳煒
Wu, Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 殼管式反應器 、苯酚合成 、CFD 、ANSYS FLUENT® 、gPROMS® |
| 外文關鍵詞: | Shell and Tube Reactor, Phenol Synthesis, Computational Fluid Dynamics, ANSYS FLUENT®, gPROMS® |
| 相關次數: | 點閱:87 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對苯酚廠反應器模擬,此反應器為2-Pass逆流型殼管式反應器,主反應物為過氧化氫異丙苯(Cumene Hydroperoxide,簡稱CHP)而產物為苯酚(Phenol)及丙酮(Acetone),結合ANSYS幾何建模、流體計算功能及gPROMS善於計算化學動力式的優點來模擬殼管式反應器的內部狀況。
透過數值方法求解出流體動力學的控制方程式,從而模擬流場流動及熱傳現象,將殼管式反應器分解成離散元素,以找到溫度梯度、速度分佈及流體流線等變數,湍流模型選擇Standard k-ε模擬更精確的結果,幾何模型在ANSYS SpaceClaim中製作,接著進行幾何網格劃分,再用Fluent求解器計算模擬結果,而化學動力式由gPROMS建構,再以gO:CFD當作編譯器將gPROMS化學動力匯入ANSYS Fluent中計算結果。
根據研究結果顯示,CHP進行熱裂解反應會釋放出大量的反應熱,若裂解反應在高溫環境下會導致工安事故,因此增加冷卻管數能有效地降低反應器溫度。
This study is aimed at the simulation of a shell and tube reactor in a phenol plant. The main reactant is cumene hydroperoxide and the products are phenol and acetone. The reactor type is 2-Pass countercurrent shell and tube reactor. ANSYS® is used for geometric modeling and fluid dynamics calculation. The gPROMS® software is used to calculate chemical kinetics. In the pre-step of the simulation, we will cut the shell and tube reactor into many control volumes. Computational fluid dynamics uses numerical methods to solve control equations. To solve for variables such as temperature gradient, velocity distribution and fluid streamlines. The flow field flow, heat transfer phenomenon and concentration distribution are presented in three dimensions. This modelling technique considered fluid flows, liquid diffusion, heat transfer and chemical reactions. It is worth mentioning that a standard, two-equation, realizable k-εturbulence model is applied the field of turbulent flow. In addition, the material property parameter setting uses polynomial regression analysis. According to the research results, the thermal cracking reaction of CHP will release a large amount of reaction heat. If the cracking reaction is operated in a high temperature environment, it will cause industrial safety accidents so increasing the number of cooling tubes can effectively reduce the reactor temperature.
[1] Aniket Shrikant Ambekar, R. Sivakumar, N. Anantharaman, M.Vivekenandan, CFD simulation study of shell and tube heat exchangers with different baffle segment configurations
[2] J. R. Thomas, “The thermal decomposition of alkyl hydroperoxides”,
Journal of the American Chemical Society, Vol. 77, (1955) 246-248.
[3] Azadeh Mirvakili, Ali Bakhtyari, Mohammad Reza Rahimpour, A CFD modeling to investigate the impact of flow mal-distribution on the performance of industrial methanol synthesis reactor
[4] M. S. Kharasch, A.Fono, and W. Nudenberg, “The chemistry of
hydroperoxide. Ⅵ. The thermal decomposition of α-cumyl hydroperoxide, J. Org. Chem. Vol.15, (1950) 113-127.
[5] I Z Baynazarov, Y S Lavrenteva, I V Akhmetov and I M Gubaydullin, Mathematical model of process of production of phenol and acetone from cumene hydroperoxide
[6] YIH-SHING DUH, CHEN-SHAN KAO, HER-HUAH HWANG and WILLIAM W.-L. LEE, THERMAL DECOMPOSITION KINETICS OF CUMENE HYDROPEROXIDE
[7] Afrianto H.,Tanshen,M.,Munkhbayar,B.,Suryo,U.,Chung,H.,Jeong,H.,
A numerical investigation on LNG flow and heat transfer characteristic in heat exchanger. Int. J. Heat Mass Transf.68,110–118.
[8] B.E. Launder and D.B. Spalding. "Lectures in mathematical models of turbulence," Academic Press, London, Englandd,(1972).
[9] J.H. Ferziger, M. Peric, Computational Methods for Fluid Dynamics, Springer Science & Business Media, 2012.
[10] Dmitrii Iakupov, Phenolic resin processing unit development and energy optimization in phenol and acetone production
[11] gO:CFD : gPROMS Object for Reactive CFD, A gPROMS technical manual, 09 January 2009.
[12] gPROMS Builder Guide, Release v3.5, June 2012.
[13] Perry. John H, Chemical engineers handbook, 3-679 (1941).
[14] Zakoshansky V M 2009 Phenol and acetone: An analysis of process technologies and of the kinetics and the mechanisms of corresponding major reactions (St. Petersburg: Chemizdat).
[15] Kruzhalov B D and Golovanenko B N 1963 Coproduction of phenol and acetone (Moscow: Goskhimizdat).
[16] Lu, Y., Miao, L., Zhang, Y., Mannan, M. S., Reaction Mechanism of CHP Decomposition and Its Application to Reactivity Hazards Evaluation
[17] K. M. Luo, J. G. Chang, S. H. Lin, C.T. Chang, T. F. Yeh, K. H. Hu and C. S. Kao, ”The criterion of critical runaway and stable temperature in cumene hydroperoxide reaction”, Journal of Loss Prevention in the Process Industries, 14 (2001) 229-239.
[18] Annandale, N. J., “Cumene hydroperoxide explosion”, Chemical & Engineering News, vol. 71 (1993) 4.
[19] R. Hiatt, T. Mill, C. Irwin and J. K. Castelman, J. Org. Chem. Vol. 33 (1968) 1421.
[20] S. Emani, M. Ramasamy, K.Z.K. Shaari, CFD modelling of shell-side asphaltenes deposition in a shell and tube heat exchanger, AIP Conference Proceedings, AIP Publishing: 020118, 2017.
[21] ANSYS Chemkin Tutorials Manual, v17.0, January 2016.
[22] Dakhnavi.E.M and Kharlampidi.H.E 2010 Prospects for the development of acid-catalytic decomposition of cumene hydroperoxide.
[23] J.H. Ferziger, M. Peric, Computational Methods for Fluid Dynamics, Springer Science & Business Media, 2012.
[24] A. Ansys, Theory manual, in: Release; 2014.