| 研究生: |
洪宗立 Hong, Zong-Li |
|---|---|
| 論文名稱: |
嵌入式多層奈米碳管之幾何非線性靜力分析 Geometrically Nonlinear Static Analysis of an Embedded Multi-Walled Carbon Nanotube |
| 指導教授: |
吳致平
Wu, Chih-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 36 |
| 中文關鍵詞: | 奈米碳管 、基礎 、非線性靜態 、非局部Timoshenko 梁 、Reissner 混合變分原理 、凡得瓦爾力 |
| 外文關鍵詞: | Carbon nanotubes, Foundations, Nonlinear static, Nonlocal Timoshenko beams, Reissner’s mixed variational theorem, Van der Waals interaction |
| 相關次數: | 點閱:118 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文基於Reissner混合變分原理(Reissner’s mixed variational theorem, RMVT)發展幾何非線性非局部Timoshenko梁理論(Timoshenko beam theory, TBT),應用於嵌入式多層奈米碳管(multi-walled carbon nanotube, MWCNT),在考慮凡得瓦爾力作用下,該結構之幾何非線性靜力分析。嵌入式MWCNT的最外層受到外部載重作用,配合自由端、簡支承及固端支承的組合作為邊界條件,除此之外,本文亦考慮MWCNT任兩層間的凡得瓦爾力互制效應,並使用Pasternak基礎模型來模擬MWCNT與周圍介質之相互作用。文中以Eringen非局部彈性理論解釋小尺度效應,推衍相應之幾何非線性TBT控制方程式和可能的邊界條件,MWCNT的非線性位移則由微分擬合法以及直接迭代法求解。在數值範例中,本文證實了基於RMVT非局部TBT在求解上能夠快速收斂,且其線性收斂解與文獻中使用各式虛位移原理(principle of virtual displacement, PVD)非局部梁理論得到的解相當一致。
Based on Reissner’s mixed variational theorem (RMVT), rather than the principle of virtual displacement (PVD), we present a nonlocal Timoshenko beam theory (TBT) for the geometrically nonlinear static analysis of multi-walled carbon nanotubes (MWCNT) embedded in an elastic medium. The embedded MWCNT is subjected to mechanical loads on its outer-most surface, with combinations of simply-supported and clamped edge conditions. The van der Waals interaction between any pair of walls constituting the MWCNT is considered, and the interaction between the MWCNT and its surrounding medium is simulated using the Pasternak-type foundation model. In the formulation, the governing equations of a typical wall and the associated boundary conditions are derived, in which von Karman geometrical nonlinearity is considered. Eringen’s nonlocal elasticity theory is used to account for the small length scale effect. The deformations induced in the embedded MWCNT are obtained using the differential quadrature method and a direct iteration approach.
[1] S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58.
[2] A.C. Eringen, Nonlocal polar elastic continua, International Journal of Engineering
Science 10 (1972) 1-16.
[3] A.C. Eringen. On differential equations of nonlocal elasticity and solutions of screw
dislocation and surface waves, Journal of Applied Physics 54 (1983) 4703-4710.
[4] A.C. Eringen. Nonlocal continuum field theories, Springer-Verlag New York, Inc. 2002.
[5] R.F. Gibson, E.O. Ayorinde and Y.F. Wen, Vibrations of carbon nanotubes and their
composites: a review, Composites Science and Technology 67 (2007) 1-28.
[6] B. Arash and Q. Wang, A review on the application of nonlocal elastic models in
modeling of carbon nanotubes and graphenes, Computational Materials Science 51
(2012) 303-313.
[7] K.F. Wang, B.L. Wang and T. Kitamura, A review on the application of modified
continuum models in modeling and simulation of nanostructures, Atca Mechanica Sinica
32 (2016) 83-100.
[8] Y.G. Hu, K.M. Liew and Q. Wang, Modeling of vibrations of carbon nanotubes, Procedia
Engineering 31 (2012) 343-347.
24
[9] M.A. Eltaher, M.E. Khater and S.A. Emam, A review on nonlocal elastic models for
bending, buckling, vibrations, and wave propagation of nanoscale beams, Applied
Mathematical Modelling 40 (2016) 4109-4128.
[10] S. Brischetto, A continuum elastic three-dimensional model for natural frequencies of
single-walled carbon nanotubes, Composites Part B-Engineering 61 (2014) 222-228.
[11] Y.M. Fu, J.W. Hong and X.Q. Wang, Analysis of nonlinear vibration for embedded
carbon nanotubes, Journal of Sound and Vibration 296 (2006) 746-756.
[12] D. Walgraef, On the mechanics of deformation instabilities in carbon nanotubes,
European Physical Journal 146 (2007) 443-457.
[13] M. Aydogdu, Vibration of multi-walled carbon nanotubes by generalized shear
deformation theory, International Journal of Mechanical Sciences 50 (2008) 837-844
[14] M. Aydogdu, A general nonlocal beam theory: Its application to nanobeam bending,
buckling and vibration, Physica E: Low-dimensional Systems and Nanostructures 41
(2009) 1651-1655.
[15] T. Murmu and S.C. Pradhan, Small-scale effect on the vibration of nonuniform
nanocantilever based on nonlocal elasticity theory, Physica E: Low-dimensional
Systems and Nanostructures 41 (2009) 1451-1456.
25
[16] T. Murmu and S.C. Pradhan, Thermo-mechanical vibration of a single-walled carbon
nanotube embedded in an elastic medium based on nonlocal elasticity theory,
Computational Materials Science 46 (2009) 854-859.
[17] J.N. Reddy and S.D. Pang, Nonlocal continuum theories of beams for the analysis of
carbon nanotubes, Journal of Applied Physics 103 (2008) 023511.
[18] J.N. Reddy, Nonlocal theories for bending, buckling and vibration of beams,
International Journal of Engineering Science 45 (2007) 288-307.
[19] H.T. Thai, A nonlocal beam theory for bending, buckling, and vibration of nanobeams,
International Journal of Engineering Science 52 (2012) 56-64.
[20] H.T. Thai and T.P. Vo, A nonlocal sinusoidal shear deformation beam theory with
application to bending, buckling, and vibration of nanobeams, International Journal of
Engineering Science 54 (2012) 58-66.
[21] J. Yang, L.L. Ke and S. Kitipornchai, Nonlinear free vibration of single-walled carbon
nanotubes using nonlocal Timoshenko beam theory, Physica E: Low-dimensional
Systems and Nanostructures 42 (2010) 1727-1735.
[22] M.H. Ghayesh, Nonlinear size-dependent behaviour of single-walled carbon nanotubes,
Applied Physics A 117 (2014) 1393-1399.
26
[23] L.L. Ke, Y. Xiang, J. Yang and S. Kitipornchai, Nonlinear free vibration of embedded
double-walled carbon nanotubes based on nonlocal Timoshenko beam theory,
Computational Materials Science 47 (2009) 409-417.
[24] R. Ansari, R. Gholami and M.A. Darabi, Nonlinear free vibration of embedded doublewalled
carbon nanotubes with layerwise boundary conditions, Acta Mechanica 223
(2012) 2523-2536.
[25] E. Reissner, On a certain mixed variational theorem and a proposed application,
International Journal for Numerocal Methods in Engineering 20 (1984) 1366-1368.
[26] E. Reissner, On a mixed variational theorem and on shear deformable plate theory,
International Journal for Numerocal Methods in Engineering 23 (1986) 193-198.
[27] C.P. Wu and W.W. Lai, Free vibration of an embedded single-walled carbon nanotube
with various boundary conditions using the RMVT-based nonlocal Timoshenko beam
theory and DQ method, Physica E: Low-dimensional Systems and Nanostructures 68
(2015) 8-21.
[28] C.P. Wu and W.W. Lai, Reissner’s mixed variational theorem-based nonlocal
Timoshenko beam theory for a single-walled carbon nanotube embedded in an elastic
medium and with various boundary conditions, Composite Structures 122 (2015) 390-
404.
27
[29] G. Cowper, The Shear Coefficient in Timoshenko’s Beam Theory, Journal of Applied
Mechanics 33 (1966) 335-340.
[30] X.Q. He, S. Kitipornchai and K.M. Liew, Buckling analysis of multi-walled carbon
nanotubes: a continuum model accounting for van der Waals interaction, Journal of the
Mechanics and Physics of Solids 53 (2005) 303-326.
[31] X.Q. He, S. Kitipornchai and C.M. Wang, K.M. Liew, Modeling of van der Waals force
for infinitesimal deformation of multi-walled carbon nanotubes treated as cylindrical
shells, International Journal of Solids and Structure 42 (2005) 6032-6047.
[32] Q. Wang and C.M. Wang, The constitutive relation and small scale parameter of
nonlocal continuum mechanics for modelling carbon nanotubes, Nanotechnology 18
(2007) 075702.
[33] C. W. Bert and M. Malik, Differential quadrature: a powerful new technique for analysis
of composite structures, Composite Structures 39 (1997) 179-189.
[34] H. Du, M. Lim and R. Lin, Application of generalized differential quadrature method
to structural problems, International Journal for Numerocal Methods in Engineering
37 (1994) 1881-1896.
[35] C. P. Wu and C. Y. Lee, Differential quadrature solution for the free vibration analysis
of laminated conical shells with variable stiffness, International Journal of Mechanical
Sciences 43 (2001) 1853-1869.