簡易檢索 / 詳目顯示

研究生: 陳威任
Chen, Wei-Jen
論文名稱: 海洋暖化及海洋酸化對孔雀蛤(Perna viridis)足絲黏附影響之探討
Investigation of the Effects of Ocean Warming and Acidification on Byssal Attachment in Asian Green Mussels (Perna viridis)
指導教授: 邱慈暉
Chiou, Tsyr-Huei
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 66
中文關鍵詞: 貽貝足絲海洋暖化海洋酸化
外文關鍵詞: mussels, byssus, ocean warming, ocean acidification
相關次數: 點閱:47下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 足絲(Byssus)是由貽貝(mussel)所分泌的成束細絲,其功能是將貽貝附著在穩固的基質上,以抵抗海浪的衝擊以及捕食者的移除,使貽貝能夠在海洋環境中實現固著生活型態。足絲黏附對於貽貝的生存至關重要,近年來海洋暖化及酸化的議題備受關注,鑒於海洋貽貝所扮演的各種生態角色,若能了解溫度及酸鹼值的變化如何影響足絲黏附以及兩者間是否具有交互作用,能夠為貽貝相關的生態議題提供重要的基礎資訊,因此本研究使用在台灣俗稱「孔雀蛤」的綠殼菜蛤(Perna viridis)作為實驗物種,在實驗室中將孔雀蛤暴露於一系列模擬海洋暖化及酸化的組合條件下分泌足絲,比較足絲產量是否具有差異,考慮到海水對於足絲的固化作用,將生成的足絲置於不同海水條件下固化後,針對單一足絲的形態包括足絲線寬度和斑塊面積、失效位置以及失效力進行量測,從結構及形態方面來探討足絲的附著功能如何受影響。研究結果表明未來海洋暖化及酸化暫時不會對孔雀蛤的足絲產量造成負面影響,在此情況下,足絲產量取決於孔雀蛤的狀況指數(condition index),意即組織生長較佳的個體能夠產生更多的足絲。足絲線寬度越寬及斑塊面積越大的足絲具有更高的失效力,足絲的失效力隨著溫度升高而降低,酸化的海水則增強了失效力,然而,足絲形態的差異並非失效力改變的主要原因,斑塊與表面之間分子交聯的弱化才是足絲失效力下降的關鍵。有趣的是,海洋酸化似乎減緩了暖化對足絲黏附的負面影響,這暗示了孔雀蛤對海洋酸化的適應潛力。

    Byssus is a crucial structure for the survival of mussels, and its adhesive function is often influenced by various physical and chemical factors in the environment. To understand how recent ocean warming and acidification affect mussel byssus adhesion and whether there is an interaction between the two, this study exposed Asian green mussels (Perna viridis) to various combinations of temperature and pH conditions to induce byssus secretion. Afterward, the byssus production was calculated, and measurements were taken for the thread width, plaque area, failure location, and failure force of individual byssus. The results indicate that future ocean warming and acidification temporarily do not negatively impact byssus production in Asian green mussels. Under these conditions, byssus production depends on the mussel's condition index (CI). The byssus with wider thread and larger plaque areas exhibits higher failure force. The failure force of byssus decreases with increasing temperature, while acidified seawater enhances the failure force. However, differences in byssus morphology are not the primary cause of changes in failure force; the weakening of molecular cross-linking between the plaque and the surface is key. Interestingly, ocean acidification appears to alleviate the negative impact of warming on byssus adhesion, suggesting potential adaptation of Asian green mussels to ocean acidification.

    摘要 I 誌謝 VI 目錄 VII 表目錄 IX 圖目錄 X 第一章、前言 1 1.1 足絲 1 1.1.1 足絲功能 1 1.1.2 足絲結構 2 1.1.3 足絲蛋白 3 1.1.4 足絲斑塊黏附原理 4 1.1.5 足絲分泌過程 5 1.2 環境因子與足絲黏附 7 1.3 海洋暖化及海洋酸化與貽貝足絲黏附 8 1.4 研究動機與目的 10 第二章、材料與方法 12 2.1 樣本採集 12 2.2 實驗設置 12 2.3 孔雀蛤個體參數量測 13 2.4 足絲參數量測 13 2.5 足絲失效力量測 14 2.6 統計分析 14 第三章、結果 16 3.1 足絲分泌數量、足絲形態及失效力 16 3.2 足絲分泌數量之多元線性回歸分析 17 3.3 足絲失效力之線性混和模型分析 17 3.4 足絲失效模式 17 第四章、討論 19 4.1 海洋暖化及酸化與孔雀蛤足絲分泌數量 19 4.2 海洋暖化及酸化與孔雀蛤足絲黏附 20 4.3 海洋暖化及酸化下貽貝足絲黏附研究之應用 23 4.4 結論 25 參考文獻 27 表 36 圖 40 補充資料 53

    Aguilera, M. A., Thiel, M., Ullrich, N., Luna-Jorquera, G., & Buschbaum, C. (2017). Selective byssus attachment behavior of mytilid mussels from hard-and soft-bottom coastal systems. Journal of Experimental Marine Biology and Ecology, 497, 61-70.
    Arias, P., Bellouin, N., Coppola, E., Jones, R., Krinner, G., Marotzke, J., Naik, V., Palmer, M., Plattner, G.-K., & Rogelj, J. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Technical Summary.
    Asaduzzaman, M., Akter, S., Hoque, N. F., Shakil, A., Noor, A. R., Akter, M. N., & Rahman, M. M. (2020). Multifaceted linkages among eco-physiological factors, seasonal plankton dynamics and selective feeding behavior of the green mussel (Perna viridis) in the south-east coast of the Bay of Bengal. Journal of Sea Research, 164, 101933.
    Babarro, J. M., Abad, M. J., Gestoso, I., Silva, E., & Olabarria, C. (2018). Susceptibility of two co-existing mytilid species to simulated predation under projected climate change conditions. Hydrobiologia, 807, 247-261.
    Babarro, J. M., Filgueira, R., Padín, X. A., & Longa Portabales, M. A. (2020). A novel index of the performance of Mytilus galloprovincialis to improve commercial exploitation in aquaculture. Frontiers in Marine Science, 7, 719.
    Bandara, N., Zeng, H., & Wu, J. (2013). Marine mussel adhesion: biochemistry, mechanisms, and biomimetics. Journal of adhesion science and technology, 27(18-19), 2139-2162.
    Beaudry, A., Fortier, M., Masson, S., Auffret, M., Brousseau, P., & Fournier, M. (2016). Effect of temperature on immunocompetence of the blue mussel (Mytilus edulis). Journal of xenobiotics, 6(1), 5889.
    Bell, E. C., & Gosline, J. M. (1997). Strategies for life in flow: tenacity, morphometry, and probability of dislodgment of two Mytilus species. Marine Ecology Progress Series, 159, 197-208.
    Bernstein, J. H., Filippidi, E., Waite, J. H., & Valentine, M. T. (2020). Effects of sea water pH on marine mussel plaque maturation. Soft Matter, 16(40), 9339-9346.
    Bindoff, N. L., Cheung, W. W., Kairo, J. G., Arístegui, J., Guinder, V. A., Hallberg, R., Hilmi, N. J. M., Jiao, N., Karim, M. S., & Levin, L. (2019). Changing ocean, marine ecosystems, and dependent communities. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, 477-587.
    Brodsky, S. (2011). Cold temperature effects on byssal thread production by the native mussel Geukensia demissa versus the non-native mussel Mytella charruana. The Pegasus Review: UCF Undergraduate Research Journal, 5(1), 1.
    Burzio, L. O., Burzio, V. A., Silva, T., Burzio, L. A., & Pardo, J. (1997). Environmental bioadhesion: themes and applications. Current Opinion in Biotechnology, 8(3), 309-312.
    Caldeira, K., & Wickett, M. E. (2003). Anthropogenic carbon and ocean pH. Nature, 425(6956), 365-365.
    Carrington, E. (2002). Seasonal variation in the attachment strength of blue mussels: causes and consequences. Limnology and Oceanography, 47(6), 1723-1733.
    Carrington, E., Moeser, G. M., Dimond, J., Mello, J. J., & Boller, M. L. (2009). Seasonal disturbance to mussel beds: field test of a mechanistic model predicting wave dislodgment. Limnology and Oceanography, 54(3), 978-986.
    Carrington, E., Moeser, G. M., Thompson, S. B., Coutts, L. C., & Craig, C. A. (2008). Mussel attachment on rocky shores: the effect of flow on byssus production. Integrative and Comparative Biology, 48(6), 801-807.
    Carson, H. S., López-Duarte, P. C., Rasmussen, L., Wang, D., & Levin, L. A. (2010). Reproductive timing alters population connectivity in marine metapopulations. Current Biology, 20(21), 1926-1931.
    Cheung, S., Tong, P., Yip, K., & Shin, P. (2004). Chemical cues from predators and damaged conspecifics affect byssus production in the green-lipped mussel Perna viridis. Marine and Freshwater Behaviour and Physiology, 37(2), 127-135.
    Clements, J. C., Hicks, C., Tremblay, R., & Comeau, L. A. (2018). Elevated seawater temperature, not p CO2, negatively affects post-spawning adult mussels (Mytilus edulis) under food limitation. Conservation Physiology, 6(1), cox078.
    Cohen, N., Waite, J. H., McMeeking, R. M., & Valentine, M. T. (2019). Force distribution and multiscale mechanics in the mussel byssus. Philosophical Transactions of the Royal Society B, 374(1784), 20190202.
    Cole, V. J., Parker, L. M., Scanes, E., Wright, J., Barnett, L., & Ross, P. M. (2021). Climate change alters shellfish reef communities: A temperate mesocosm experiment. Marine Pollution Bulletin, 173, 113113.
    Degtyar, E., Harrington, M. J., Politi, Y., & Fratzl, P. (2014). The mechanical role of metal ions in biogenic protein‐based materials. Angewandte Chemie International Edition, 53(45), 12026-12044.
    Denny, M., & Helmuth, B. (2009). Confronting the physiological bottleneck: a challenge from ecomechanics. Integrative and Comparative Biology, 49(3), 197-201.
    Dickey, G., Preziosi, B. M., Clark, C. T., & Bowden, T. J. (2018). The impact of ocean acidification on the byssal threads of the blue mussel (Mytilus edulis). PLoS One, 13(10), e0205908.
    Fan, H., & Gong, J. P. (2021). Bioinspired underwater adhesives. Advanced Materials, 33(44), 2102983.
    Filippidi, E., DeMartini, D. G., Malo de Molina, P., Danner, E. W., Kim, J., Helgeson, M. E., Waite, J. H., & Valentine, M. T. (2015). The microscopic network structure of mussel (Mytilus) adhesive plaques. Journal of The Royal Society Interface, 12(113), 20150827.
    Garner, Y. L., & Litvaitis, M. K. (2013a). Effects of injured conspecifics and predators on byssogenesis, attachment strength and movement in the blue mussel, Mytilus edulis. Journal of Experimental Marine Biology and Ecology, 448, 136-140.
    Garner, Y. L., & Litvaitis, M. K. (2013b). Effects of wave exposure, temperature and epibiont fouling on byssal thread production and growth in the blue mussel, Mytilus edulis, in the Gulf of Maine. Journal of Experimental Marine Biology and Ecology, 446, 52-56.
    George, M. N., & Carrington, E. (2018). Environmental post-processing increases the adhesion strength of mussel byssus adhesive. Biofouling, 34(4), 388-397.
    George, M. N., Pedigo, B., & Carrington, E. (2018). Hypoxia weakens mussel attachment by interrupting DOPA cross-linking during adhesive plaque curing. Journal of The Royal Society Interface, 15(147), 20180489.
    Gosling, E. (2021). Marine Mussels: Ecology, Physiology, Genetics and Culture. John Wiley & Sons.
    Guinotte, J. M., & Fabry, V. J. (2008). Ocean acidification and its potential effects on marine ecosystems. Annals of the New York Academy of Sciences, 1134(1), 320-342.
    Gutiérrez, J. L., Jones, C. G., Strayer, D. L., & Iribarne, O. O. (2003). Mollusks as ecosystem engineers: the role of shell production in aquatic habitats. OIKOS, 101(1), 79-90.
    Hagenau, A., Scheidt, H. A., Serpell, L., Huster, D., & Scheibel, T. (2009). Structural analysis of proteinaceous components in byssal threads of the mussel Mytilus galloprovincialis. Macromolecular Bioscience, 9(2), 162-168.
    Harrington, M. J., Jehle, F., & Priemel, T. (2018). Mussel byssus structure‐function and fabrication as inspiration for biotechnological production of advanced materials. Biotechnology journal, 13(12), 1800133.
    Holten-Andersen, N., Mates, T. E., Toprak, M. S., Stucky, G. D., Zok, F. W., & Waite, J. H. (2009). Metals and the integrity of a biological coating: the cuticle of mussel byssus. Langmuir, 25(6), 3323-3326.
    Hwang, D. S., Zeng, H., Masic, A., Harrington, M. J., Israelachvili, J. N., & Waite, J. H. (2010). Protein-and metal-dependent interactions of a prominent protein in mussel adhesive plaques. Journal of Biological Chemistry, 285(33), 25850-25858.
    Inoue, K., Yoshioka, Y., Tanaka, H., Kinjo, A., Sassa, M., Ueda, I., Shinzato, C., Toyoda, A., & Itoh, T. (2021). Genomics and transcriptomics of the green mussel explain the durability of its byssus. Scientific Reports, 11(1), 5992.
    Iqbal, T. H. (2017). Feeding Ecology of Asian Green Mussel (Perna viridis): Influences of Sexes, Sizes, Habitats and Seasons. Prince of Songkla University, Pattani Campus.
    Joyce, P. W., & Falkenberg, L. J. (2022). Microplastics, both non-biodegradable and biodegradable, do not affect the whole organism functioning of a marine mussel. Science of The Total Environment, 839, 156204.
    Kan, Y., Wei, Z., Tan, Q., & Chen, Y. (2020). Inter-and intramolecular adhesion mechanisms of mussel foot proteins. Science China Technological Sciences, 63, 1675-1698.
    Kapsenberg, L., Miglioli, A., Bitter, M. C., Tambutté, E., Dumollard, R., & Gattuso, J.-P. (2018). Ocean pH fluctuations affect mussel larvae at key developmental transitions. Proceedings of the Royal Society B, 285(1893), 20182381.
    Knowlen, M., Blattenbauer, A., & Newcomb, L. (2012). Temperature effects on byssal thread production in the mussel, Mytilus trossulus.
    Kong, H., Clements, J. C., Dupont, S., Wang, T., Huang, X., Shang, Y., Huang, W., Chen, J., Hu, M., & Wang, Y. (2019). Seawater acidification and temperature modulate anti-predator defenses in two co-existing Mytilus species. Marine Pollution Bulletin, 145, 118-125.
    Lee, H., Scherer, N. F., & Messersmith, P. B. (2006). Single-molecule mechanics of mussel adhesion. Proceedings of the National Academy of Sciences, 103(35), 12999-13003.
    Li, S., Liu, C., Zhan, A., Xie, L., & Zhang, R. (2017). Influencing mechanism of ocean acidification on byssus performance in the pearl oyster Pinctada fucata. Environmental Science & Technology, 51(13), 7696-7706.
    Li, Y.-F., Yang, X.-Y., Cheng, Z.-Y., Wang, L.-Y., Wang, W.-X., Liang, X., & Yang, J.-L. (2020). Near-future levels of ocean temperature weaken the byssus production and performance of the mussel Mytilus coruscus. Science of The Total Environment, 733, 139347.
    Mackenzie, C. L., Ormondroyd, G. A., Curling, S. F., Ball, R. J., Whiteley, N. M., & Malham, S. K. (2014). Ocean warming, more than acidification, reduces shell strength in a commercial shellfish species during food limitation. PLoS One, 9(1), e86764.
    Martinez Rodriguez, N. R., Das, S., Kaufman, Y., Israelachvili, J. N., & Waite, J. H. (2015). Interfacial pH during mussel adhesive plaque formation. Biofouling, 31(2), 221-227.
    Meadows, P. S., Meadows, A., & Murray, J. M. (2012). Biological modifiers of marine benthic seascapes: Their role as ecosystem engineers. Geomorphology, 157, 31-48.
    Miller, D. R., Spahn, J. E., & Waite, J. H. (2015). The staying power of adhesion-associated antioxidant activity in Mytilus californianus. Journal of The Royal Society Interface, 12(111), 20150614.
    Moeser, G. M., & Carrington, E. (2006). Seasonal variation in mussel byssal thread mechanics. Journal of Experimental Biology, 209(10), 1996-2003.
    Mora, C., Wei, C.-L., Rollo, A., Amaro, T., Baco, A. R., Billett, D., Bopp, L., Chen, Q., Collier, M., & Danovaro, R. (2013). Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century. PLoS Biology, 11(10), e1001682.
    Motta, C. M., Tizzano, M., Tagliafierro, A. M., Simoniello, P., Panzuto, R., Esposito, L., Migliaccio, V., Rosati, L., & Avallone, B. (2018). Biocide triclosan impairs byssus formation in marine mussels Mytilus galloprovincialis. Environmental Pollution, 241, 388-396.
    Newcomb, L., Cannistra, A., & Carrington, E. (2022). Divergent Effects of Ocean Warming on Byssal Attachment in Two Congener Mussel Species. Integrative and Comparative Biology, 62(3), 700-710.
    Newcomb, L., George, M., O'Donnell, M., & Carrington, E. (2014). The effects of elevated temperature and pCO2 on mussel attachment strength in a field and laboratory setting. Salish Sea Ecosystem Conference, Seattle, WA.
    Newcomb, L. A., George, M. N., O’Donnell, M. J., & Carrington, E. (2019). Only as strong as the weakest link: structural analysis of the combined effects of elevated temperature and pCO2 on mussel attachment. Conservation Physiology, 7(1), coz068.
    Nishizaki, M. T., Barron, S., & Carew, E. (2015). Thermal stress increases fluctuating asymmetry in marine mussels: environmental variation and developmental instability. Ecosphere, 6(5), 1-15.
    O’Donnell, M. J., George, M. N., & Carrington, E. (2013). Mussel byssus attachment weakened by ocean acidification. Nature Climate Change, 3(6), 587-590.
    Ohkawa, K., Nagai, T., Nishida, A., & Yamomoto, H. (2009). Purification of DOPA-containing foot proteins from green mussel, Perna viridis, and adhesive properties of synthetic model copolypeptides. The Journal of Adhesion, 85(11), 770-791.
    Padin, X. A., Babarro, J. M., Silva, E., Longa Portabales, M. Á., Calvo, S., & Nolasco, R. (2021). Variability in strength of byssus attachment and index condition of subtidal mussels during the maximum growth stage. Aquaculture Research, 52(8), 3485-3497.
    Priemel, T., Degtyar, E., Dean, M. N., & Harrington, M. J. (2017). Rapid self-assembly of complex biomolecular architectures during mussel byssus biofabrication. Nature Communications, 8(1), 14539.
    Raven, J., Caldeira, K., Elderfield, H., Hoegh-Guldberg, O., Liss, P., Riebesell, U., Shepherd, J., Turley, C., & Watson, A. (2005). Effects of atmospheric CO2 enhancement on ocean chemistry. In T. C. P. Ltd (Ed.), Ocean acidification due to increasing atmospheric carbon dioxide (pp. 5-13). The Royal Society.
    Sagert, J., & Waite, J. H. (2009). Hyperunstable matrix proteins in the byssus of Mytilus galloprovincialis. Journal of Experimental Biology, 212(14), 2224-2236.
    Silverman, H. G., & Roberto, F. F. (2007). Understanding marine mussel adhesion. Marine Biotechnology, 9, 661-681.
    Smith, J. R., Fong, P., & Ambrose, R. F. (2006). Dramatic declines in mussel bed community diversity: response to climate change? Ecology, 87(5), 1153-1161.
    Suhre, M. H., Gertz, M., Steegborn, C., & Scheibel, T. (2014). Structural and functional features of a collagen-binding matrix protein from the mussel byssus. Nature Communications, 5(1), 3392.
    Sunday, J. M., Fabricius, K. E., Kroeker, K. J., Anderson, K. M., Brown, N. E., Barry, J. P., Connell, S. D., Dupont, S., Gaylord, B., & Hall-Spencer, J. M. (2017). Ocean acidification can mediate biodiversity shifts by changing biogenic habitat. Nature Climate Change, 7(1), 81-85.
    Susetya, I. E., Basyuni, M., Desrita, D., Susilowati, A., & Kajita, T. (2021). Density and characteristics of green mussels (Perna viridis) in Percut Sei Tuan coastal, North Sumatra, Indonesia. Biodiversitas Journal of Biological Diversity, 22(2).
    Thomsen, J., & Melzner, F. (2010). Moderate seawater acidification does not elicit long-term metabolic depression in the blue mussel Mytilus edulis. Marine Biology, 157(12), 2667-2676.
    van de Koppel, J., Gascoigne, J. C., Theraulaz, G., Rietkerk, M., Mooij, W. M., & Herman, P. M. (2008). Experimental evidence for spatial self-organization and its emergent effects in mussel bed ecosystems. Science, 322(5902), 739-742.
    van der Ouderaa, I. B., Claassen, J. R., van de Koppel, J., Bishop, M. J., & Eriksson, B. K. (2021). Bioengineering promotes habitat heterogeneity and biodiversity on mussel reefs. Journal of Experimental Marine Biology and Ecology, 540, 151561.
    Waite, J. H. (1992). The formation of mussel byssus: anatomy of a natural manufacturing process. In S. T. Case (Ed.), Structure, Cellular Synthesis and Assembly of Biopolymers (pp. 27-54). Springer, Berlin, Heidelberg.
    Waite, J. H. (2017). Mussel adhesion–essential footwork. Journal of Experimental Biology, 220(4), 517-530.
    Waite, J. H., & Tanzer, M. L. (1981). Polyphenolic substance of Mytilus edulis: novel adhesive containing L-dopa and hydroxyproline. Science, 212(4498), 1038-1040.
    Waite, J. H., Vaccaro, E., Sun, C., & Lucas, J. M. (2002). Elastomeric gradients: a hedge against stress concentration in marine holdfasts? Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 357(1418), 143-153.
    Wang, Y., Hu, M., Shin, P., & Cheung, S. G. (2010). Induction of anti-predator responses in the green-lipped mussel Perna viridis under hypoxia. Marine Biology, 157, 747-754.
    Wu, F., Xie, Z., Lan, Y., Dupont, S., Sun, M., Cui, S., Huang, X., Huang, W., Liu, L., Hu, M., Lu, W., & Wang, Y. (2018). Short-term exposure of Mytilus coruscus to decreased pH and salinity change impacts immune parameters of their haemocytes. Frontiers in Physiology, 9, 166.
    Xu, X., Tong, Y., Deng, Y., & Zhao, L. (2023). Impacts of marine heatwaves on byssus production in highly invasive fouling mussels. Marine Environmental Research, 184, 105871.
    Yu, J., Wei, W., Danner, E., Ashley, R. K., Israelachvili, J. N., & Waite, J. H. (2011). Mussel protein adhesion depends on interprotein thiol-mediated redox modulation. Nature Chemical Biology, 7(9), 588-590.
    Zhao, X., Guo, C., Han, Y., Che, Z., Wang, Y., Wang, X., Chai, X., Wu, H., & Liu, G. (2017). Ocean acidification decreases mussel byssal attachment strength and induces molecular byssal responses. Marine Ecology Progress Series, 565, 67-77.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE