| 研究生: |
張櫂玹 Chang, Choa-Hsuan |
|---|---|
| 論文名稱: |
以陽極表面處理製備高效率(11%)背向照射式染料敏化太陽能電池 Fabrication of High-Efficiency (11%) Dye-Sensitized Solar Cells in Backside Illumination Mode by Anode Surface Treatments |
| 指導教授: |
陳進成
Chen, Chin-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 染料敏化太陽能電池 、可撓 、背向照射 、氧電漿處理 、結構 |
| 外文關鍵詞: | Dye-sensitized solar cells, Flexibility, Back illumination, Oxygen plasma treatment, Structure |
| 相關次數: | 點閱:109 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究欲大幅改善背向照射可撓式染料敏化太陽能電池(DSSC)效率,設計了幾類陽極表面處理方法,針對太陽能電池效率提升之兩大關鍵著手:光捕獲效率、電子電洞對萃取效率,內容分為四大部分。
第一部分為探討此系統中,多孔性二氧化鈦薄膜之最佳膜厚(11.4 μm),以此膜厚應用於後續其他表面處理之基板,並搭配四氯化鈦前處理與後處理,改善基板漏電流及降低電子傳輸至陽極之阻力,其最佳元件效率為5%。第二部分為兩階段濕蝕刻鈦板,先利用HF水溶液製作微米結構,再浸泡於KOH水溶液製作奈米結構,形成具微奈米結構之可撓式元件,以提升光捕獲、載子收集效率,其最佳元件效率為5.9%。第三部分為本論文所發展極有效之抑制漏電流方法-氧電漿前處理,使元件效率從5.9%大幅提升至7.8%。第四部分為利用反應性離子蝕刻(RIE)製作不同高深寬比且規則排列結構,以更改善光捕獲、電子電洞對萃取效率,最佳效率為11%,此結果目前為背照式染料敏化太陽能電池最高紀錄。
本論文開發之技術,不僅可用於DSSC,亦可應用於演變成最新之鈣鈦礦敏化太陽能電池(perovskite-sensitized solar cells),其中,最核心之「結構」概念,還可廣泛應用於所有種類的太陽能電池。
In order to improve the efficiency of the dye-sensitized solar cells (DSSCs) substantially in the backside illumination mode with the flexible substrate. The study elucidated several effective anode surface treatment methods, focusing on two key factors: light harvesting efficiency and carrier extraction efficiency. There are divided into four parts.
The first part was to find out the optimum mesoporous TiO2 thickness, 11.4 μm, and the thickness was used in other various surface treated-substrates. TiCl4(aq) pre-treatment and post-treatment were employed to retard the charge recombination near the Ti substrate and to reduce the electrons transfer resistance in TiO2 film. An optimized efficiency of 5% was obtained. The second part employed two-steps wet etching process. Ti substrates were treated with HF solution and KOH solution sequentially to form micro- and nano-structures and were then used as the flexible substrate in DSSCs. An optimized efficiency of 5.9% was achieved. The third part developed a very powerful retarding current leakage method, i.e., O2 plasma pre-treatment, improving the efficiency from 5.9% to 7.8%. The fourth part employed a reactive ion etching (RIE) method to fabricate high aspect ratio and regular pattern of micro scale structures to further improve light harvesting and carrier extraction. The best efficiency was 11%, which is the highest efficiency for backside illumination mode DSSCs made of TiO2 nanoparticles reported in the literature.
The technologies developed in the study can not only apply in DSSC but perovskite-sensitized solar cells. Besides, "structure" concept can be used for other kinds of solar cells.
[1] C.-H. Chang, H.-H. Lin, C.-C. Chen, and F. C. N. Hong, "Enhancing dye-sensitized solar cell efficiency by anode surface treatments," Thin Solid Films, 2014.
[2] M. Gratzel, "Photoelectrochemical cells," Nature, vol. 414, pp. 338-344, 2001.
[3] D. M. Chapin, C. S. Fuller, and G. L. Pearson, "A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power," Journal of Applied Physics, vol. 25, pp. 676-677, 1954.
[4] J. Yang, A. Banerjee, T. Glatfelter, S. Sugiyama, and S. Guha, "Recent progress in amorphous silicon alloy leading to 13% stable cell efficiency," in Photovoltaic Specialists Conference, 1997., Conference Record of the Twenty-Sixth IEEE, 1997, pp. 563-568.
[5] NREL, "Best research photovoltaic cell efficiency Rev.," U. D. o. Energy, Ed., ed, 2014.
[6] B. O'Regan and M. Gratzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," Nature, vol. 353, pp. 737-740, 1991.
[7] J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, et al., "Sequential deposition as a route to high-performance perovskite-sensitized solar cells," Nature, vol. 499, pp. 316-9, 2013.
[8] S. Ito, N. L. Cevey Ha, G. Rothenberger, P. Liska, P. Comte, S. M. Zakeeruddin, et al., "High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode," Chem. Commun., pp. 4004-4006, 2006.
[9] H. Tsubomura, M. Matsumura, Y. Nomura, and T. Amamiya, "Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell," Nature, vol. 261, pp. 402-403, 1976.
[10] P. Péchy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, et al., "Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells," Journal of the American Chemical Society, vol. 123, pp. 1613-1624, 2001.
[11] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, et al., "Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes," Journal of the American Chemical Society, vol. 115, pp. 6382-6390, 1993.
[12] M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, et al., "Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers," Journal of the American Chemical Society, vol. 127, pp. 16835-16847, 2005.
[13] Q. Yu, Y. Wang, Z. Yi, N. Zu, J. Zhang, M. Zhang, et al., "High-Efficiency Dye-Sensitized Solar Cells: The Influence of Lithium Ions on Exciton Dissociation, Charge Recombination, and Surface States," ACS Nano, vol. 4, pp. 6032-6038, 2010.
[14] A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, et al., "Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency," Science, vol. 334, pp. 629-634, 2011.
[15] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, F. E. CurchodBasile, N. Ashari-Astani, et al., "Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers," Nat Chem, vol. 6, pp. 242-247, 2014.
[16] M. Ryan, "Progress in Ruthenium Complexs for Dye Sensitized Solar Ceels," Platinum Metals Review, vol. 53, pp. 216-218, 2009.
[17] M. Liu, M. B. Johnston, and H. J. Snaith, "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature, vol. 501, pp. 395-398, 2013.
[18] H. J. Snaith, "Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells," The Journal of Physical Chemistry Letters, vol. 4, pp. 3623-3630, 2013.
[19] N. J. Jeon, H. G. Lee, Y. C. Kim, J. Seo, J. H. Noh, J. Lee, et al., "o-Methoxy Substituents in Spiro-OMeTAD for Efficient Inorganic–Organic Hybrid Perovskite Solar Cells," Journal of the American Chemical Society, vol. 136, pp. 7837-7840, 2014.
[20] J.-W. Lee, D.-J. Seol, A.-N. Cho, and N.-G. Park, "High-Efficiency Perovskite Solar Cells Based on the Black Polymorph of HC(NH2)2PbI3," Advanced Materials, 2014.
[21] R. F. Service, "Perovskite Solar Cells Keep On Surging," Science, vol. 344, p. 458, 2014.
[22] S. Nakade, M. Matsuda, S. Kambe, Y. Saito, T. Kitamura, T. Sakata, et al., "Dependence of TiO2 Nanoparticle Preparation Methods and Annealing Temperature on the Efficiency of Dye-Sensitized Solar Cells," The Journal of Physical Chemistry B, vol. 106, pp. 10004-10010, 2002.
[23] K. Onoda, S. Ngamsinlapasathian, T. Fujieda, and S. Yoshikawa, "The superiority of Ti plate as the substrate of dye-sensitized solar cells," Solar Energy Materials and Solar Cells, vol. 91, pp. 1176-1181, 2007.
[24] M. G. Kang, N.-G. Park, K. S. Ryu, S. H. Chang, and K.-J. Kim, "Flexible Metallic Substrates for TiO2 Film of Dye-sensitized Solar Cells," Chemistry Letters, vol. 34, pp. 804-805, 2005.
[25] W. Zhou, H. Liu, R. I. Boughton, G. Du, J. Lin, J. Wang, et al., "One-dimensional single-crystalline Ti-O based nanostructures: properties, synthesis, modifications and applications," Journal of Materials Chemistry, vol. 20, pp. 5993-6008, 2010.
[26] R.-H. Tao, J.-M. Wu, H.-X. Xue, X.-M. Song, X. Pan, X.-Q. Fang, et al., "A novel approach to titania nanowire arrays as photoanodes of back-illuminated dye-sensitized solar cells," Journal of Power Sources, vol. 195, pp. 2989-2995, 2010.
[27] D. Kuang, J. r. m. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, et al., "Application of Highly Ordered TiO2 Nanotube Arrays in Flexible Dye-Sensitized Solar Cells," ACS Nano, vol. 2, pp. 1113-1116, 2008.
[28] J. Wang and Z. Lin, "Dye-Sensitized TiO2 Nanotube Solar Cells with Markedly Enhanced Performance via Rational Surface Engineering," Chemistry of Materials, vol. 22, pp. 579-584, 2010.
[29] H.-G. Yun, Y. Jun, J. Kim, B.-S. Bae, and M. G. Kang, "Effect of increased surface area of stainless steel substrates on the efficiency of dye-sensitized solar cells," Applied Physics Letters, vol. 93, pp. 133311-3, 2008.
[30] C.-H. Lee, W.-H. Chiu, K.-M. Lee, W.-F. Hsieh, and J.-M. Wu, "Improved performance of flexible dye-sensitized solar cells by introducing an interfacial layer on Ti substrates," Journal of Materials Chemistry, vol. 21, pp. 5114-5119, 2011.
[31] T.-Y. Tsai, C.-M. Chen, S.-J. Cherng, and S.-Y. Suen, "An efficient titanium-based photoanode for dye-sensitized solar cell under back-side illumination," Progress in Photovoltaics: Research and Applications, vol. 21, pp. 226-231, 2013.
[32] J. An, W. Guo, and T. Ma, "Enhanced Photoconversion Efficiency of All-Flexible Dye-Sensitized Solar Cells Based on a Ti Substrate with TiO2 Nanoforest Underlayer," Small, vol. 8, pp. 3427-3431, 2012.
[33] H.-G. Yun, B.-S. Bae, and M. G. Kang, "A Simple and Highly Efficient Method for Surface Treatment of Ti Substrates for Use in Dye-Sensitized Solar Cells," Advanced Energy Materials, vol. 1, pp. 337-342, 2011.
[34] T. W. Hamann, R. A. Jensen, A. B. F. Martinson, H. Van Ryswyk, and J. T. Hupp, "Advancing beyond current generation dye-sensitized solar cells," Energy & Environmental Science, vol. 1, pp. 66-78, 2008.
[35] A. Hagfeldt and M. Graetzel, "Light-Induced Redox Reactions in Nanocrystalline Systems," Chemical Reviews, vol. 95, pp. 49-68, 1995.
[36] Y. Xie, P. Joshi, S. B. Darling, Q. Chen, T. Zhang, D. Galipeau, et al., "Electrolyte Effects on Electron Transport and Recombination at ZnO Nanorods for Dye-Sensitized Solar Cells," The Journal of Physical Chemistry C, vol. 114, pp. 17880-17888, 2010.
[37] J. M. Kroon, N. J. Bakker, H. J. P. Smit, P. Liska, K. R. Thampi, P. Wang, et al., "Nanocrystalline dye-sensitized solar cells having maximum performance," Progress in Photovoltaics: Research and Applications, vol. 15, pp. 1-18, 2007.
[38] C. Zhang, Y. Huang, Z. Huo, S. Chen, and S. Dai, "Photoelectrochemical Effects of Guanidinium Thiocyanate on Dye-Sensitized Solar Cell Performance and Stability," The Journal of Physical Chemistry C, vol. 113, pp. 21779-21783, 2009.
[39] Y. Diamant, S. G. Chen, O. Melamed, and A. Zaban, "Core−Shell Nanoporous Electrode for Dye Sensitized Solar Cells: the Effect of the SrTiO3 Shell on the Electronic Properties of the TiO2 Core," The Journal of Physical Chemistry B, vol. 107, pp. 1977-1981, 2003.
[40] T. Berger, T. Lana-Villarreal, D. Monllor-Satoca, and R. Gómez, "An Electrochemical Study on the Nature of Trap States in Nanocrystalline Rutile Thin Films," The Journal of Physical Chemistry C, vol. 111, pp. 9936-9942, 2007.
[41] Z. Zhang, S. M. Zakeeruddin, B. C. O'Regan, R. Humphry-Baker, and M. Grätzel, "Influence of 4-Guanidinobutyric Acid as Coadsorbent in Reducing Recombination in Dye-Sensitized Solar Cells," The Journal of Physical Chemistry B, vol. 109, pp. 21818-21824, 2005.
[42] R. Sekuler and R. Blake, Perception. New York: Alfred A. Knopf Inc, 1985.
[43] G. J. Meyer, "Efficient Light-to-Electrical Energy Conversion: Nanocrystalline TiO2 Films Modified with Inorganic Sensitizers," Journal of Chemical Education, vol. 74, p. 652, 1997.
[44] G. Wolfbauer, A. M. Bond, J. C. Eklund, and D. R. MacFarlane, "A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells," Solar Energy Materials and Solar Cells, vol. 70, pp. 85-101, 2001.
[45] J. R. Roth, Industrial plasma engineering-Volume 1: Principles London, 1995.
[46] E. Vazsonyi, K. De Clercq, R. Einhaus, E. Van Kerschaver, K. Said, J. Poortmans, et al., "Improved anisotropic etching process for industrial texturing of silicon solar cells," Solar Energy Materials and Solar Cells, vol. 57, pp. 179-188, 1999.
[47] Available: http://www.elecfans.com/book/story.php?id=31
[48] K. Zhu, E. A. Schiff, N.-G. Park, J. van de Lagemaat, and A. J. Frank, "Determining the locus for photocarrier recombination in dye-sensitized solar cells," Applied Physics Letters, vol. 80, pp. 685-687, 2002.
[49] C.-B. Lee, "Influence of TiCl4 Treatment on Dye-Sensitized Solar Cell with Electrospun TiO2 Nanofibers," The Journal of Future Fusion Techonology, vol. 1, pp. 43-46, 2009.
[50] A. Yella, L.-P. Heiniger, P. Gao, M. K. Nazeeruddin, and M. Grätzel, "Nanocrystalline Rutile Electron Extraction Layer Enables Low-Temperature Solution Processed Perovskite Photovoltaics with 13.7% Efficiency," Nano Letters, vol. 14, pp. 2591-2596, 2014.
[51] S. Rühle, S. Yahav, S. Greenwald, and A. Zaban, "Importance of Recombination at the TCO/Electrolyte Interface for High Efficiency Quantum Dot Sensitized Solar Cells," The Journal of Physical Chemistry C, vol. 116, pp. 17473-17478, 2012.
[52] A. Burke, S. Ito, H. Snaith, U. Bach, J. Kwiatkowski, and M. Grätzel, "The Function of a TiO2 Compact Layer in Dye-Sensitized Solar Cells Incorporating “Planar” Organic Dyes," Nano Letters, vol. 8, pp. 977-981, 2008.
[53] H. Choi, C. Nahm, J. Kim, J. Moon, S. Nam, D.-R. Jung, et al., "The effect of TiCl4-treated TiO2 compact layer on the performance of dye-sensitized solar cell," Current Applied Physics, vol. 12, pp. 737-741, 2012.
[54] S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, et al., "Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%," Thin Solid Films, vol. 516, pp. 4613-4619, 2008.
[55] P. J. Cameron and L. M. Peter, "Characterization of Titanium Dioxide Blocking Layers in Dye-Sensitized Nanocrystalline Solar Cells," The Journal of Physical Chemistry B, vol. 107, pp. 14394-14400, 2003.
[56] S. Ito, P. Liska, P. Comte, R. Charvet, P. Pechy, U. Bach, et al., "Control of dark current in photoelectrochemical (TiO2/I--I3-) and dye-sensitized solar cells," Chemical Communications, pp. 4351-4353, 2005.
[57] J. K. Kim, K. Shin, K. S. Lee, and J. H. Park, "Influence of a TiCl4 Treatment Condition on Dye-Sensitized Solar Cells," Journal of Electrochemical Science and Technology, vol. 1, pp. 81-84, 2010.
[58] L. Dloczik, O. Ileperuma, I. Lauermann, L. M. Peter, E. A. Ponomarev, G. Redmond, et al., "Dynamic Response of Dye-Sensitized Nanocrystalline Solar Cells: Characterization by Intensity-Modulated Photocurrent Spectroscopy," The Journal of Physical Chemistry B, vol. 101, pp. 10281-10289, 1997.
[59] M. Y. Song, D. K. Kim, S. M. Jo, and D. Y. Kim, "Enhancement of the photocurrent generation in dye-sensitized solar cell based on electrospun TiO2 electrode by surface treatment," Synthetic Metals, vol. 155, pp. 635-638, 2005.
[60] P. M. Sommeling, B. C. O'Regan, R. R. Haswell, H. J. P. Smit, N. J. Bakker, J. J. T. Smits, et al., "Influence of a TiCl4 Post-Treatment on Nanocrystalline TiO2 Films in Dye-Sensitized Solar Cells," The Journal of Physical Chemistry B, vol. 110, pp. 19191-19197, 2006.
[61] N. Fuke, R. Katoh, A. Islam, M. Kasuya, A. Furube, A. Fukui, et al., "Influence of TiCl4 treatment on back contact dye-sensitized solar cells sensitized with black dye," Energy & Environmental Science, vol. 2, pp. 1205-1209, 2009.
[62] D. B. Menzies, Q. Dai, Y.-B. Cheng, G.P.Simon, and L. Spiccia, Destination Renewables - From Research to Market: 41st Annual Conference of the Australian and New Zealand Solar Energy Society "Effect of Post-Treatment of Titania Electrodes with Titanium Precursors in Dye-Sensitised Solar Cell Efficiency": Australian and New Zealand Solar Energy Society, 2003.
[63] Z.-S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, "Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell," Coordination Chemistry Reviews, vol. 248, pp. 1381-1389, 2004.
[64] K. Hara, H. Sugihara, Y. Tachibana, A. Islam, M. Yanagida, K. Sayama, et al., "Dye-Sensitized Nanocrystalline TiO2 Solar Cells Based on Ruthenium(II) Phenanthroline Complex Photosensitizers," Langmuir, vol. 17, pp. 5992-5999, 2001.
[65] J. Xia, N. Masaki, K. Jiang, and S. Yanagida, "Deposition of a Thin Film of TiOx from a Titanium Metal Target as Novel Blocking Layers at Conducting Glass/TiO2 Interfaces in Ionic Liquid Mesoscopic TiO2 Dye-Sensitized Solar Cells," The Journal of Physical Chemistry B, vol. 110, pp. 25222-25228, 2006.
[66] J. Krüger, R. Plass, L. Cevey, M. Piccirelli, M. Grätzel, and U. Bach, "High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination," Applied Physics Letters, vol. 79, pp. 2085-2087, 2001.
[67] H. Yamashita, Y. Ichihashi, M. Harada, G. Stewart, M. A. Fox, and M. Anpo, "Photocatalytic Degradation of 1-Octanol on Anchored Titanium Oxide and on TiO2 Powder Catalysts," Journal of Catalysis, vol. 158, pp. 97-101, 1996.