簡易檢索 / 詳目顯示

研究生: 張櫂玹
Chang, Choa-Hsuan
論文名稱: 以陽極表面處理製備高效率(11%)背向照射式染料敏化太陽能電池
Fabrication of High-Efficiency (11%) Dye-Sensitized Solar Cells in Backside Illumination Mode by Anode Surface Treatments
指導教授: 陳進成
Chen, Chin-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 105
中文關鍵詞: 染料敏化太陽能電池可撓背向照射氧電漿處理結構
外文關鍵詞: Dye-sensitized solar cells, Flexibility, Back illumination, Oxygen plasma treatment, Structure
相關次數: 點閱:109下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究欲大幅改善背向照射可撓式染料敏化太陽能電池(DSSC)效率,設計了幾類陽極表面處理方法,針對太陽能電池效率提升之兩大關鍵著手:光捕獲效率、電子電洞對萃取效率,內容分為四大部分。
    第一部分為探討此系統中,多孔性二氧化鈦薄膜之最佳膜厚(11.4 μm),以此膜厚應用於後續其他表面處理之基板,並搭配四氯化鈦前處理與後處理,改善基板漏電流及降低電子傳輸至陽極之阻力,其最佳元件效率為5%。第二部分為兩階段濕蝕刻鈦板,先利用HF水溶液製作微米結構,再浸泡於KOH水溶液製作奈米結構,形成具微奈米結構之可撓式元件,以提升光捕獲、載子收集效率,其最佳元件效率為5.9%。第三部分為本論文所發展極有效之抑制漏電流方法-氧電漿前處理,使元件效率從5.9%大幅提升至7.8%。第四部分為利用反應性離子蝕刻(RIE)製作不同高深寬比且規則排列結構,以更改善光捕獲、電子電洞對萃取效率,最佳效率為11%,此結果目前為背照式染料敏化太陽能電池最高紀錄。
    本論文開發之技術,不僅可用於DSSC,亦可應用於演變成最新之鈣鈦礦敏化太陽能電池(perovskite-sensitized solar cells),其中,最核心之「結構」概念,還可廣泛應用於所有種類的太陽能電池。

    In order to improve the efficiency of the dye-sensitized solar cells (DSSCs) substantially in the backside illumination mode with the flexible substrate. The study elucidated several effective anode surface treatment methods, focusing on two key factors: light harvesting efficiency and carrier extraction efficiency. There are divided into four parts.
    The first part was to find out the optimum mesoporous TiO2 thickness, 11.4 μm, and the thickness was used in other various surface treated-substrates. TiCl4(aq) pre-treatment and post-treatment were employed to retard the charge recombination near the Ti substrate and to reduce the electrons transfer resistance in TiO2 film. An optimized efficiency of 5% was obtained. The second part employed two-steps wet etching process. Ti substrates were treated with HF solution and KOH solution sequentially to form micro- and nano-structures and were then used as the flexible substrate in DSSCs. An optimized efficiency of 5.9% was achieved. The third part developed a very powerful retarding current leakage method, i.e., O2 plasma pre-treatment, improving the efficiency from 5.9% to 7.8%. The fourth part employed a reactive ion etching (RIE) method to fabricate high aspect ratio and regular pattern of micro scale structures to further improve light harvesting and carrier extraction. The best efficiency was 11%, which is the highest efficiency for backside illumination mode DSSCs made of TiO2 nanoparticles reported in the literature.
    The technologies developed in the study can not only apply in DSSC but perovskite-sensitized solar cells. Besides, "structure" concept can be used for other kinds of solar cells.

    中文摘要 I Extended Abstract II 誌謝 X 目錄 XII 表目錄 XVII 圖目錄 XVIII 第一章 緒論 1 1-1 前言 1 1-2 太陽能電池之介紹與分類 2 1-3 研究動機與目的 5 第二章 理論基礎與文獻回顧 7 2-1染料敏化太陽能電池之演變 7 2-1.1背向照射可撓式染料敏化太陽能電池之現況 10 2-2 染料敏化太陽能電池介紹 12 2-2.1 工作原理 12 2-2.2 導電基板 15 2-2.3 氧化物半導體 16 2-2.4 染料 17 2-2.5 電解液 18 2-2.6 對電極 19 2-3 太陽能電池效率之計算 19 2-4 電漿介紹與應用 23 2-5 蝕刻技術 28 2-5.1濕蝕刻 (Wet Etching) 29 2-5.2 乾蝕刻 (Dry Etching) 31 第三章 實驗儀器與研究方法 35 3-1 實驗藥品與基板材料 35 3-2 儀器設備及分析鑑定 36 3-2.1 旋轉塗佈機 (Spin Coater) 36 3-2.2 真空電漿設備 36 3-2.2A 金屬濺鍍機 (Sputter Coater) 36 3-2.2B 磁控濺鍍機 (Magnetron Sputter) 37 3-2.2C 電子束蒸鍍機 (Electron-Beam Evaporation) 38 3-2.2D 低壓氧電漿表面改質系統 39 3-2.2E反應性離子蝕刻 (Reactive Ion Etching, RIE) 39 3-2.3 表面分析 40 3-2.3A 掃描式電子顯微鏡 (Scanning Electron Microscopy, SEM) 40 3-2.3B 二次離子質譜儀 (Secondary Ion Mass Spectrometer, SIMS) 42 3-2.4 電性測試 43 3-2.4A 四點探針 (Four-Point Probe) 43 3-2.4B 太陽光模擬器 (Solar Simulator) 44 3-2.4C光電轉換效率量測系統 (IPCE Measurement) 45 3-2.5 紫外光-可見光光譜儀 (UV-Vis Spectrophotometer) 47 3-3 實驗設計流程 47 3-4 實驗步驟 49 3-4.1 基板清潔 49 3-4.2基板表面前處理 49 3-4.2A 濕蝕刻 49 3-4.2B 乾蝕刻與磁控濺鍍及電子束蒸鍍鈦金屬 50 3-4.2C氧電漿前處理 51 3-4.2D TiCl4水溶液前處理 52 3-4.3旋轉塗佈製作多孔性二氧化鈦光電極 53 3-4.3A TiO2膠體溶液製備 53 3-4.3B TiO2薄膜製備 54 3-4.3C TiCl4水溶液後處理 55 3-4.4 染料吸附 56 3-4.5 對電極製備 57 3-4.6 電解液配製 57 3-4.7 元件封裝 57 第四章 結果與討論 59 4-1二氧化鈦厚度與表面修飾對染料敏化太陽能電池效率之影響 59 4-1.1 TiCl4水溶液前處理 59 4-1.2 不同TiO2厚度對效率之影響 61 4-1.3 TiCl4水溶液後處理 63 4-2 濕蝕刻製作微奈米結構於鈦基板對染料敏化太陽能電池效率之影響 64 4-3 氧電漿前處理於鈦基板對染料敏化太陽能電池效率之影響 67 4-4乾蝕刻製作微米結構於電極對染料敏化太陽能電池效率之影響 72 4-4.1 乾蝕刻製作微米結構(深1.5 μm)之表面形態與光學分析 73 4-4.2 微米結構(深1.5 μm)鍍鈦之表面形態與電性分析 80 4-4.3 乾蝕刻製作微米結構(深6 μm)之表面形態與光學分析 84 4-4.4 微米結構(深6 μm)鍍鈦之表面形態與電性分析 86 第五章 結論 91 第六章 未來展望 94 參考文獻 95 作者自述 105 著作目錄 105 表目錄 表2-1 各種染料結構式 9 表4-1 旋轉塗佈不同TiO2膜厚於未具結構Ti基板之太陽能電池效率 63 表4-2 旋轉塗佈不同TiO2膜厚於具微奈米結構Ti基板之太陽能電池效率 67 表4-3 不同氧電漿前處理時間於平板Ti與具微奈米結構Ti基板之太陽能電池效率 70 表4-4 不同方式製作Ti薄膜之片電阻比較 82 表4-5 不同方式製作Ti薄膜之太陽能電池效率比較,其多孔性TiO2薄膜厚度為11.4 μm 83 表4-6 無結構Ti板、Sputter Ti於無結構Si基板、不同深寬比結構之太陽能電池效率比較,其多孔性TiO2薄膜厚度為11.4 μm 88 表4-7 旋轉塗佈不同TiO2膜厚於PMSQ-7基板之太陽能電池效率 90 圖目錄 圖1-1 所有不同太陽能電池效率約40年之演變 4 圖1-2 入射光從Pt對電極進入(背向照光)之可撓式DSSC 6 圖1-3 背向照射與正向照射之I-V曲線 6 圖2-1 DSSC演變歷史 10 圖2-2 染料敏化太陽能電池(DSSC)工作原理示意圖 13 圖2-3 染料敏化電池不同路徑之速率常數及電流密度示意圖 15 圖2-4 太陽光光譜 17 圖2-5 染料分子與TiO2表面形成化學鍵結 18 圖2-6 太陽能電池之I-V曲線 21 圖2-7標準模擬AM 1.5G太陽光之光譜 22 圖2-8空氣質量(air mass)示意圖 22 圖2-9 離子化示意圖 23 圖2-10 電漿中兩側電即知電壓與電流關係圖 28 圖2-11 濕蝕刻反應機制 30 圖2-12 以KOH濕蝕刻(100) CZ矽基板 30 圖2-13 濕蝕刻與乾蝕刻之比較圖,(a) 濕蝕刻後;(b) 乾蝕刻後的剖面圖 31 圖2-14 不同乾蝕刻技術,(a) 物理性蝕刻;(b) 化學性蝕刻;(c) 物理、化學複合性蝕刻 34 圖3-1 金屬濺鍍機 37 圖3-2 濺鍍成膜示意圖 37 圖3-3 磁控電鍍鍍膜示意圖 38 圖3-4 低壓氧電漿系統示意圖 39 圖3-5 電子束與試片交互作用 41 圖3-6 四點探針量測片電阻示意圖 43 圖3-7太陽光模擬器系統 44 圖3-8 光電轉換效率量測系統 46 圖3-9 本研究背向照射染料敏化太陽能電池製備流程 48 圖3-10濕蝕刻Ti板流程圖 49 圖3-11乾蝕刻及鍍Ti膜製作元件負極流程圖 50 圖3-12氧電漿前處理進行陽極表面改質流程圖 52 圖3-13 TiCl4(aq)前處理製作電洞阻擋層之流程圖 53 圖3-14製備TiO2薄膜之流程圖 55 圖3-15 TiCl4(aq)後處理流程圖 56 圖3-16 電池組裝示意圖 58 圖4-1 有機溶劑清洗之Ti基板 61 圖4-2 旋轉塗佈兩次,製作最佳化厚度11.4 μm之TiO2薄膜 62 圖4-3 (a) 未經TiCl4後處理;(b) 經TiCl4後處理之TiO2薄膜 64 圖4-4 (A, B) 先經 HF,再經 KOH處理之Ti板 66 圖4-5 氧電漿前處理於具微奈米結構Ti板之二次離子質譜儀(SIMS)縱深氧元素分析 70 圖4-6 不同氧電漿前處理時間於平板Ti與具微奈米結構Ti基板之I-V圖 71 圖4-7 旋轉塗佈TiO2兩次之Ti基板不同表面前處理IPCE分析 71 圖4-8 具微奈米結構Ti板經氧電漿處理與未經氧電漿處理之暗電流 (dark current)分析 71 圖4-9 製作微米結構流程圖 74 圖4-10 (A) 將PMSQ注入水中;(B) 待PMSQ分散於空氣-水界面且形成白色膜;(C) 將塗佈PMMA高分子之Si基板緩慢拉起,使微米球排列於基板上 74 圖4-11 4 μm PMSQ球排列於塗佈PMMA之Si基板的SEM俯視圖 75 圖4-12 旋轉塗佈450 nm PMMA於Si基板 75 圖4-13 以RIE製作各種規則排列之微米結構於Si基板,以低壓10 mtorr蝕刻,再高壓50 mtorr蝕刻,時間各為,(A) 30、0 min (PMSQ-1);(B) 60、0 min (PMSQ-2);(C) 15、15 min (PMSQ-3);(D) 15、20 min (PMSQ-4);(E) 20、15 min (PMSQ-5);(F) 30、15 min (PMSQ-6)之SEM圖 79 圖4-14 PMSQ-2、PMSQ-4、PMSQ-5、PMSQ-6、PMSQ-7之UV-Vis反射光譜 80 圖4-15 磁控濺鍍Ti薄膜厚度為1 μm 82 圖4-16 微米結構PMSQ-4,(A) 鍍Ti前;(B) 鍍1 μm Ti後之表面形態 83 圖4-17 (A) 旋轉塗佈一次(~5.5 μm);(B) 旋轉塗佈兩次(~11.4 μm)於PMSQ-4基板 84 圖4-18 9 μm PMSQ排列於塗佈PMMA之Si基板的SEM俯視圖 85 圖4-19 製作深度6 μm 結構,(A) 45° SEM圖;(B) SEM剖面圖 86 圖4-20 磁控濺鍍1 μm Ti於微米結構PMSQ-7之表面形態 88 圖4-21 旋轉塗佈一次(~5.5 μm)於PMSQ-7基板 89 圖4-22 旋轉塗佈4000 r.p.m. 20秒,(A)一次(~2 μm);(B) 兩次(~4 μm),於未具結構Si基板 89 圖6-1 製作倒金字塔型結構陣列於Si基板 94

    [1] C.-H. Chang, H.-H. Lin, C.-C. Chen, and F. C. N. Hong, "Enhancing dye-sensitized solar cell efficiency by anode surface treatments," Thin Solid Films, 2014.
    [2] M. Gratzel, "Photoelectrochemical cells," Nature, vol. 414, pp. 338-344, 2001.
    [3] D. M. Chapin, C. S. Fuller, and G. L. Pearson, "A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power," Journal of Applied Physics, vol. 25, pp. 676-677, 1954.
    [4] J. Yang, A. Banerjee, T. Glatfelter, S. Sugiyama, and S. Guha, "Recent progress in amorphous silicon alloy leading to 13% stable cell efficiency," in Photovoltaic Specialists Conference, 1997., Conference Record of the Twenty-Sixth IEEE, 1997, pp. 563-568.
    [5] NREL, "Best research photovoltaic cell efficiency Rev.," U. D. o. Energy, Ed., ed, 2014.
    [6] B. O'Regan and M. Gratzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," Nature, vol. 353, pp. 737-740, 1991.
    [7] J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, et al., "Sequential deposition as a route to high-performance perovskite-sensitized solar cells," Nature, vol. 499, pp. 316-9, 2013.
    [8] S. Ito, N. L. Cevey Ha, G. Rothenberger, P. Liska, P. Comte, S. M. Zakeeruddin, et al., "High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode," Chem. Commun., pp. 4004-4006, 2006.
    [9] H. Tsubomura, M. Matsumura, Y. Nomura, and T. Amamiya, "Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell," Nature, vol. 261, pp. 402-403, 1976.
    [10] P. Péchy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, et al., "Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells," Journal of the American Chemical Society, vol. 123, pp. 1613-1624, 2001.
    [11] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, et al., "Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes," Journal of the American Chemical Society, vol. 115, pp. 6382-6390, 1993.
    [12] M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, et al., "Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers," Journal of the American Chemical Society, vol. 127, pp. 16835-16847, 2005.
    [13] Q. Yu, Y. Wang, Z. Yi, N. Zu, J. Zhang, M. Zhang, et al., "High-Efficiency Dye-Sensitized Solar Cells: The Influence of Lithium Ions on Exciton Dissociation, Charge Recombination, and Surface States," ACS Nano, vol. 4, pp. 6032-6038, 2010.
    [14] A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, et al., "Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency," Science, vol. 334, pp. 629-634, 2011.
    [15] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, F. E. CurchodBasile, N. Ashari-Astani, et al., "Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers," Nat Chem, vol. 6, pp. 242-247, 2014.
    [16] M. Ryan, "Progress in Ruthenium Complexs for Dye Sensitized Solar Ceels," Platinum Metals Review, vol. 53, pp. 216-218, 2009.
    [17] M. Liu, M. B. Johnston, and H. J. Snaith, "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature, vol. 501, pp. 395-398, 2013.
    [18] H. J. Snaith, "Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells," The Journal of Physical Chemistry Letters, vol. 4, pp. 3623-3630, 2013.
    [19] N. J. Jeon, H. G. Lee, Y. C. Kim, J. Seo, J. H. Noh, J. Lee, et al., "o-Methoxy Substituents in Spiro-OMeTAD for Efficient Inorganic–Organic Hybrid Perovskite Solar Cells," Journal of the American Chemical Society, vol. 136, pp. 7837-7840, 2014.
    [20] J.-W. Lee, D.-J. Seol, A.-N. Cho, and N.-G. Park, "High-Efficiency Perovskite Solar Cells Based on the Black Polymorph of HC(NH2)2PbI3," Advanced Materials, 2014.
    [21] R. F. Service, "Perovskite Solar Cells Keep On Surging," Science, vol. 344, p. 458, 2014.
    [22] S. Nakade, M. Matsuda, S. Kambe, Y. Saito, T. Kitamura, T. Sakata, et al., "Dependence of TiO2 Nanoparticle Preparation Methods and Annealing Temperature on the Efficiency of Dye-Sensitized Solar Cells," The Journal of Physical Chemistry B, vol. 106, pp. 10004-10010, 2002.
    [23] K. Onoda, S. Ngamsinlapasathian, T. Fujieda, and S. Yoshikawa, "The superiority of Ti plate as the substrate of dye-sensitized solar cells," Solar Energy Materials and Solar Cells, vol. 91, pp. 1176-1181, 2007.
    [24] M. G. Kang, N.-G. Park, K. S. Ryu, S. H. Chang, and K.-J. Kim, "Flexible Metallic Substrates for TiO2 Film of Dye-sensitized Solar Cells," Chemistry Letters, vol. 34, pp. 804-805, 2005.
    [25] W. Zhou, H. Liu, R. I. Boughton, G. Du, J. Lin, J. Wang, et al., "One-dimensional single-crystalline Ti-O based nanostructures: properties, synthesis, modifications and applications," Journal of Materials Chemistry, vol. 20, pp. 5993-6008, 2010.
    [26] R.-H. Tao, J.-M. Wu, H.-X. Xue, X.-M. Song, X. Pan, X.-Q. Fang, et al., "A novel approach to titania nanowire arrays as photoanodes of back-illuminated dye-sensitized solar cells," Journal of Power Sources, vol. 195, pp. 2989-2995, 2010.
    [27] D. Kuang, J. r. m. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, et al., "Application of Highly Ordered TiO2 Nanotube Arrays in Flexible Dye-Sensitized Solar Cells," ACS Nano, vol. 2, pp. 1113-1116, 2008.
    [28] J. Wang and Z. Lin, "Dye-Sensitized TiO2 Nanotube Solar Cells with Markedly Enhanced Performance via Rational Surface Engineering," Chemistry of Materials, vol. 22, pp. 579-584, 2010.
    [29] H.-G. Yun, Y. Jun, J. Kim, B.-S. Bae, and M. G. Kang, "Effect of increased surface area of stainless steel substrates on the efficiency of dye-sensitized solar cells," Applied Physics Letters, vol. 93, pp. 133311-3, 2008.
    [30] C.-H. Lee, W.-H. Chiu, K.-M. Lee, W.-F. Hsieh, and J.-M. Wu, "Improved performance of flexible dye-sensitized solar cells by introducing an interfacial layer on Ti substrates," Journal of Materials Chemistry, vol. 21, pp. 5114-5119, 2011.
    [31] T.-Y. Tsai, C.-M. Chen, S.-J. Cherng, and S.-Y. Suen, "An efficient titanium-based photoanode for dye-sensitized solar cell under back-side illumination," Progress in Photovoltaics: Research and Applications, vol. 21, pp. 226-231, 2013.
    [32] J. An, W. Guo, and T. Ma, "Enhanced Photoconversion Efficiency of All-Flexible Dye-Sensitized Solar Cells Based on a Ti Substrate with TiO2 Nanoforest Underlayer," Small, vol. 8, pp. 3427-3431, 2012.
    [33] H.-G. Yun, B.-S. Bae, and M. G. Kang, "A Simple and Highly Efficient Method for Surface Treatment of Ti Substrates for Use in Dye-Sensitized Solar Cells," Advanced Energy Materials, vol. 1, pp. 337-342, 2011.
    [34] T. W. Hamann, R. A. Jensen, A. B. F. Martinson, H. Van Ryswyk, and J. T. Hupp, "Advancing beyond current generation dye-sensitized solar cells," Energy & Environmental Science, vol. 1, pp. 66-78, 2008.
    [35] A. Hagfeldt and M. Graetzel, "Light-Induced Redox Reactions in Nanocrystalline Systems," Chemical Reviews, vol. 95, pp. 49-68, 1995.
    [36] Y. Xie, P. Joshi, S. B. Darling, Q. Chen, T. Zhang, D. Galipeau, et al., "Electrolyte Effects on Electron Transport and Recombination at ZnO Nanorods for Dye-Sensitized Solar Cells," The Journal of Physical Chemistry C, vol. 114, pp. 17880-17888, 2010.
    [37] J. M. Kroon, N. J. Bakker, H. J. P. Smit, P. Liska, K. R. Thampi, P. Wang, et al., "Nanocrystalline dye-sensitized solar cells having maximum performance," Progress in Photovoltaics: Research and Applications, vol. 15, pp. 1-18, 2007.
    [38] C. Zhang, Y. Huang, Z. Huo, S. Chen, and S. Dai, "Photoelectrochemical Effects of Guanidinium Thiocyanate on Dye-Sensitized Solar Cell Performance and Stability," The Journal of Physical Chemistry C, vol. 113, pp. 21779-21783, 2009.
    [39] Y. Diamant, S. G. Chen, O. Melamed, and A. Zaban, "Core−Shell Nanoporous Electrode for Dye Sensitized Solar Cells:  the Effect of the SrTiO3 Shell on the Electronic Properties of the TiO2 Core," The Journal of Physical Chemistry B, vol. 107, pp. 1977-1981, 2003.
    [40] T. Berger, T. Lana-Villarreal, D. Monllor-Satoca, and R. Gómez, "An Electrochemical Study on the Nature of Trap States in Nanocrystalline Rutile Thin Films," The Journal of Physical Chemistry C, vol. 111, pp. 9936-9942, 2007.
    [41] Z. Zhang, S. M. Zakeeruddin, B. C. O'Regan, R. Humphry-Baker, and M. Grätzel, "Influence of 4-Guanidinobutyric Acid as Coadsorbent in Reducing Recombination in Dye-Sensitized Solar Cells," The Journal of Physical Chemistry B, vol. 109, pp. 21818-21824, 2005.
    [42] R. Sekuler and R. Blake, Perception. New York: Alfred A. Knopf Inc, 1985.
    [43] G. J. Meyer, "Efficient Light-to-Electrical Energy Conversion: Nanocrystalline TiO2 Films Modified with Inorganic Sensitizers," Journal of Chemical Education, vol. 74, p. 652, 1997.
    [44] G. Wolfbauer, A. M. Bond, J. C. Eklund, and D. R. MacFarlane, "A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells," Solar Energy Materials and Solar Cells, vol. 70, pp. 85-101, 2001.
    [45] J. R. Roth, Industrial plasma engineering-Volume 1: Principles London, 1995.
    [46] E. Vazsonyi, K. De Clercq, R. Einhaus, E. Van Kerschaver, K. Said, J. Poortmans, et al., "Improved anisotropic etching process for industrial texturing of silicon solar cells," Solar Energy Materials and Solar Cells, vol. 57, pp. 179-188, 1999.
    [47] Available: http://www.elecfans.com/book/story.php?id=31
    [48] K. Zhu, E. A. Schiff, N.-G. Park, J. van de Lagemaat, and A. J. Frank, "Determining the locus for photocarrier recombination in dye-sensitized solar cells," Applied Physics Letters, vol. 80, pp. 685-687, 2002.
    [49] C.-B. Lee, "Influence of TiCl4 Treatment on Dye-Sensitized Solar Cell with Electrospun TiO2 Nanofibers," The Journal of Future Fusion Techonology, vol. 1, pp. 43-46, 2009.
    [50] A. Yella, L.-P. Heiniger, P. Gao, M. K. Nazeeruddin, and M. Grätzel, "Nanocrystalline Rutile Electron Extraction Layer Enables Low-Temperature Solution Processed Perovskite Photovoltaics with 13.7% Efficiency," Nano Letters, vol. 14, pp. 2591-2596, 2014.
    [51] S. Rühle, S. Yahav, S. Greenwald, and A. Zaban, "Importance of Recombination at the TCO/Electrolyte Interface for High Efficiency Quantum Dot Sensitized Solar Cells," The Journal of Physical Chemistry C, vol. 116, pp. 17473-17478, 2012.
    [52] A. Burke, S. Ito, H. Snaith, U. Bach, J. Kwiatkowski, and M. Grätzel, "The Function of a TiO2 Compact Layer in Dye-Sensitized Solar Cells Incorporating “Planar” Organic Dyes," Nano Letters, vol. 8, pp. 977-981, 2008.
    [53] H. Choi, C. Nahm, J. Kim, J. Moon, S. Nam, D.-R. Jung, et al., "The effect of TiCl4-treated TiO2 compact layer on the performance of dye-sensitized solar cell," Current Applied Physics, vol. 12, pp. 737-741, 2012.
    [54] S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, et al., "Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%," Thin Solid Films, vol. 516, pp. 4613-4619, 2008.
    [55] P. J. Cameron and L. M. Peter, "Characterization of Titanium Dioxide Blocking Layers in Dye-Sensitized Nanocrystalline Solar Cells," The Journal of Physical Chemistry B, vol. 107, pp. 14394-14400, 2003.
    [56] S. Ito, P. Liska, P. Comte, R. Charvet, P. Pechy, U. Bach, et al., "Control of dark current in photoelectrochemical (TiO2/I--I3-) and dye-sensitized solar cells," Chemical Communications, pp. 4351-4353, 2005.
    [57] J. K. Kim, K. Shin, K. S. Lee, and J. H. Park, "Influence of a TiCl4 Treatment Condition on Dye-Sensitized Solar Cells," Journal of Electrochemical Science and Technology, vol. 1, pp. 81-84, 2010.
    [58] L. Dloczik, O. Ileperuma, I. Lauermann, L. M. Peter, E. A. Ponomarev, G. Redmond, et al., "Dynamic Response of Dye-Sensitized Nanocrystalline Solar Cells:  Characterization by Intensity-Modulated Photocurrent Spectroscopy," The Journal of Physical Chemistry B, vol. 101, pp. 10281-10289, 1997.
    [59] M. Y. Song, D. K. Kim, S. M. Jo, and D. Y. Kim, "Enhancement of the photocurrent generation in dye-sensitized solar cell based on electrospun TiO2 electrode by surface treatment," Synthetic Metals, vol. 155, pp. 635-638, 2005.
    [60] P. M. Sommeling, B. C. O'Regan, R. R. Haswell, H. J. P. Smit, N. J. Bakker, J. J. T. Smits, et al., "Influence of a TiCl4 Post-Treatment on Nanocrystalline TiO2 Films in Dye-Sensitized Solar Cells," The Journal of Physical Chemistry B, vol. 110, pp. 19191-19197, 2006.
    [61] N. Fuke, R. Katoh, A. Islam, M. Kasuya, A. Furube, A. Fukui, et al., "Influence of TiCl4 treatment on back contact dye-sensitized solar cells sensitized with black dye," Energy & Environmental Science, vol. 2, pp. 1205-1209, 2009.
    [62] D. B. Menzies, Q. Dai, Y.-B. Cheng, G.P.Simon, and L. Spiccia, Destination Renewables - From Research to Market: 41st Annual Conference of the Australian and New Zealand Solar Energy Society "Effect of Post-Treatment of Titania Electrodes with Titanium Precursors in Dye-Sensitised Solar Cell Efficiency": Australian and New Zealand Solar Energy Society, 2003.
    [63] Z.-S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, "Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell," Coordination Chemistry Reviews, vol. 248, pp. 1381-1389, 2004.
    [64] K. Hara, H. Sugihara, Y. Tachibana, A. Islam, M. Yanagida, K. Sayama, et al., "Dye-Sensitized Nanocrystalline TiO2 Solar Cells Based on Ruthenium(II) Phenanthroline Complex Photosensitizers," Langmuir, vol. 17, pp. 5992-5999, 2001.
    [65] J. Xia, N. Masaki, K. Jiang, and S. Yanagida, "Deposition of a Thin Film of TiOx from a Titanium Metal Target as Novel Blocking Layers at Conducting Glass/TiO2 Interfaces in Ionic Liquid Mesoscopic TiO2 Dye-Sensitized Solar Cells," The Journal of Physical Chemistry B, vol. 110, pp. 25222-25228, 2006.
    [66] J. Krüger, R. Plass, L. Cevey, M. Piccirelli, M. Grätzel, and U. Bach, "High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination," Applied Physics Letters, vol. 79, pp. 2085-2087, 2001.
    [67] H. Yamashita, Y. Ichihashi, M. Harada, G. Stewart, M. A. Fox, and M. Anpo, "Photocatalytic Degradation of 1-Octanol on Anchored Titanium Oxide and on TiO2 Powder Catalysts," Journal of Catalysis, vol. 158, pp. 97-101, 1996.

    下載圖示 校內:2019-08-07公開
    校外:2019-08-07公開
    QR CODE