| 研究生: |
黃仲豪 Huang, Chung-Hao |
|---|---|
| 論文名稱: |
探討大鼠右美托嘧啶誘導麻醉下的抑制型逃避學習記憶消除及其神經機制 Neural Mechanism of Inhibitory Avoidance Memory Extinction under Dexmedetomidine-induced Anesthesia in Rats |
| 指導教授: |
陳德祐
Chen, Der-Yow |
| 學位類別: |
碩士 Master |
| 系所名稱: |
社會科學院 - 心理學系 Department of Psychology |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 記憶消除 、麻醉 、右美托嘧啶 、下邊緣皮質 、抑制型逃避學習 、β-腎上腺素受體 |
| 外文關鍵詞: | memory extinction, anesthesia, dexmedetomidine, infralimbic cortex, inhibitory avoidance, β-adrenoceptor |
| 相關次數: | 點閱:31 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
暴露療法為現行臨床治療焦慮型疾患最被廣泛使用的療法。透過使患者於療程中重複接觸恐懼刺激,使其恐懼反應逐漸下降而最終消失,這樣的流程屬於帕夫洛夫古典制約恐懼消除的一種。本研究透過一系列抑制型逃避學習記憶消除實驗,試圖提供治療焦慮型疾患的新治療方式,以減輕患者於療程中的不適。在實驗一中,我們發現大鼠能夠成功在右美托嘧啶(dexmedetomidine)誘導的麻醉下建立消除記憶。實驗二則進一步利用腎上腺素作為記憶增強劑,在消除過後立即施打於周邊,發現大鼠可在較短的消除流程中就成功習得原本無法習得的消除記憶。在實驗三中,透過在消除過後立即於內側前額葉的下邊緣皮質(infralimbic cortex)進行顱內注射,我們發現 β-腎上腺素受體拮抗劑 propranolol 能夠阻斷腎上腺素對消除記憶的增強效果。另一方面,將之注射於內側前額葉的前邊緣皮質(prelimbic cortex)則無法阻斷腎上腺素的效果。綜合實驗結果發現,本研究不僅發現消除記憶能夠在麻醉下成功建立,亦發現可透過一種仰賴特定於下邊緣皮質而非前邊緣皮質中 β-腎上腺素受體的機制促進其記憶穩固。透過這些發現,我們提供臨床治療焦慮型疾患一種全新治療法的發展方向,希望能透過麻醉降低患者須於療程中經歷的不適,而能使治療觸及更廣泛的族群。
Extinction-based exposure therapy has long been the most dominant way to treat anxiety-like disorders. Patients have to be exposed to fear stimuli repeatedly during therapies in order to dampen fear responses. In the present study, we found that rat's fear extinction can be established under dexmedetomidine-induced anesthesia in experiment 1. In experiment 2, we further use epinephrine (EPI) as a peripheral memory enhancer and found that rats can acquire extinction memory under anesthesia successfully within fewer days. In experiment 3, by microinjection into infralimbic cortex (IL) of medial prefrontal cortex (mPFC) immediately after each extinction trial, we found that β-adrenoceptor antagonist, propranolol (PROP) can block the EPI memory-enhancing effect found in experiment 2. On the other hand, PROP microinjection into prelimbic cortex (PL) of mPFC shows no impact on the enhancing effect. Together, our present finding suggest that memory extinction can be established under anesthesia, which also can be enhanced by a β-adrenoceptor activation-dependent mechanism specifically in IL but not PL. Our present study provides a new aspect for clinical therapy development to treat anxiety-like disorders, relieving the discomfort of patients during therapies, which may potentially induce the possibility for a larger population to reach out for clinical treatments.
鄭茜馨(2023)。大鼠在右美托嘧啶誘導麻醉下學習味覺嫌惡制約與其神經機制。國立成功大學心理學研究所碩士論文。https://hdl.handle.net/11296/mstfbc
蕭翔允(2017)。大鼠在右美托嘧啶誘導麻醉下學習抑制型逃避學習作業與其神經機制。國立成功大學心理學研究所碩士論文。https://hdl.handle.net/11296/a5kggq
Agster, K. L., Mejias-Aponte, C. A., Clark, B. D., & Waterhouse, B. D. (2013). Evidence for a regional specificity in the density and distribution of noradrenergic varicosities in rat cortex. Journal of Comparative Neurology, 521(10), 2195-2207. https://doi.org/10.1002/cne.23270
Bentz, D., Michael, T., de Quervain, D. J. F., & Wilhelm, F. H. (2010). Enhancing exposure therapy for anxiety disorders with glucocorticoids: From basic mechanisms of emotional learning to clinical applications. Journal of Anxiety Disorders, 24(2), 223-230. https://doi.org/10.1016/j.janxdis.2009.10.011
Dahlstrom, A., & Fuxe, K. (1964). Localization of monoamines in the lower brain stem. Experientia, 20(7), 398-399. https://doi.org/10.1007/BF02147990
Duran, É. P., Corchs, F., Vianna, A., Araújo, A. C., Del Real, N., Silva, C., Ferreira, A. P., Francez, P. D., Godói, C., Silveira, H., Matsumoto, L., Gebara, C. M., Neto, T. P. D., Chilvarquer, R., de Siqueira, L. L., Bernik, M., & Neto, F. L. (2021). A randomized clinical trial to assess the efficacy of trial-based cognitive therapy compared to prolonged exposure for post-traumatic stress disorder: preliminary findings. CNS spectrums, 26(4), 427-434. https://doi.org/10.1017/S1092852920001455
Fiorenza, N. G., Rosa, J., Izquierdo, I., & Myskiw, J. C. (2012). Modulation of the extinction of two different fear-motivated tasks in three distinct brain areas. Behavioural Brain Research, 232(1), 210-216. https://doi.org/10.1016/j.bbr.2012.04.015
Giustino, T. F., & Maren, S. (2018). Noradrenergic modulation of fear conditioning and extinction. Frontiers in Behavioral Neuroscience, 12, 43. https://doi.org/10.3389/fnbeh.2018.00043
Gold, P. E., Weinberger, N. M., & Sternberg, D. B. (1985). Epinephrine-induced learning under anesthesia: retention performance at several training-testing intervals. Behavioral Neuroscience, 99(5), 1019-1022. https://doi.org/10.1037//0735-7044.99.5.1019
Hikind, N., & Maroun, M. (2008). Microinfusion of the D1 receptor antagonist, SCH23390 into the IL but not the BLA impairs consolidation of extinction of auditory fear conditioning. Neurobiology of Learning and Memory, 90(1), 217-222. https://doi.org/10.1016/j.nlm.2008.03.003
Kida, S. (2019). Reconsolidation/destabilization, extinction and forgetting of fear memory as therapeutic targets for PTSD. Psychopharmacology, 236(1), 49-57. https://doi.org/10.1007/s00213-018-5086-2
Laurent, V., & Westbrook, R. F. (2008). Distinct contributions of the basolateral amygdala and the medial prefrontal cortex to learning and relearning extinction of context conditioned fear. Learning & Memory, 15(9), 657-666. https://doi.org/10.1101/lm.1080108
Laurent, V., & Westbrook, R. F. (2009). Inactivation of the infralimbic but not the prelimbic cortex impairs consolidation and retrieval of fear extinction. Learning & Memory, 16(9), 520-529. https://doi.org/10.1101/lm.1474609
Liang, K. C., Chen, L. L., & Huang, T. E. (1995). The role of amygdala norepinephrine in memory formation: involvement in the memory enhancing effect of peripheral epinephrine. Chinese Journal of Physiology, 38(2), 81-91. https://www.ncbi.nlm.nih.gov/pubmed/8697902
Lubke, G. H., Kerssens, C., Phaf, H., & Sebel, P. S. (1999). Dependence of explicit and implicit memory on hypnotic state in trauma patients. Anesthesiology, 90(3), 670-680. https://doi.org/10.1097/00000542-199903000-00007
Mueller, D., Bravo-Rivera, C., & Quirk, G. J. (2010). Infralimbic D2 receptors are necessary for fear extinction and extinction-related tone responses. Biological Psychiatry, 68(11), 1055-1060. https://doi.org/10.1016/j.biopsych.2010.08.014
Mueller, D., & Cahill, S. P. (2010). Noradrenergic modulation of extinction learning and exposure therapy. Behavioural Brain Research, 208(1), 1-11. https://doi.org/10.1016/j.bbr.2009.11.025
Mueller, D., Porter, J. T., & Quirk, G. J. (2008). Noradrenergic signaling in infralimbic cortex increases cell excitability and strengthens memory for fear extinction. Journal of Neuroscience, 28(2), 369-375. https://doi.org/10.1523/Jneurosci.3248-07.2008
Myers, K. M., Carlezon, W. A., & Davis, M. (2011). Glutamate receptors in extinction and extinction-based therapies for psychiatric illness. Neuropsychopharmacology, 36(4), 910-910. https://doi.org/10.1038/npp.2011.3
Parsons, R. G., & Ressler, K. J. (2013). Implications of memory modulation for post-traumatic stress and fear disorders. Nature Neuroscience, 16(2), 146-153. https://doi.org/10.1038/nn.3296
Pfeiffer, U. J., & Fendt, M. (2006). Prefrontal dopamine D4 receptors are involved in encoding fear extinction. Neuroreport, 17(8), 847-850. https://doi.org/10.1097/01.wnr.0000220142.29413.6f
Power, A. E., Berlau, D. J., McGaugh, J. L., & Steward, O. (2006). Anisomycin infused into the hippocampus fails to block "reconsolidation" but impairs extinction: The role of re-exposure duration. Learning & Memory, 13(1), 27-34. https://doi.org/10.1101/lm.91206
Quirk, G. J. (2002). Memory for extinction of conditioned fear is long-lasting and persists following spontaneous recovery. Learning & Memory, 9(6), 402-407. https://doi.org/10.1101/lm.49602
Quirk, G. J., & Mueller, D. (2008). Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology, 33(1), 56-72. https://doi.org/10.1038/sj.npp.1301555
Rozeske, R. R., Valerio, S., Chaudun, F., & Herry, C. (2015). Prefrontal neuronal circuits of contextual fear conditioning. Genes, Brain and Behavior, 14(1), 22-36. https://doi.org/10.1111/gbb.12181
Santini, E., Sepulveda-Orengo, M., & Porter, J. T. (2012). Muscarinic receptors modulate the intrinsic excitability of infralimbic neurons and consolidation of fear extinction. Neuropsychopharmacology, 37(9), 2047-2056. https://doi.org/10.1038/npp.2012.52
Schwarz, L. A., & Luo, L. (2015). Organization of the locus coeruleus-norepinephrine system. Current Biology, 25(21), R1051-R1056. https://doi.org/10.1016/j.cub.2015.09.039
Schwarz, L. A., Miyamichi, K., Gao, X. J., Beier, K. T., Weissbourd, B., DeLoach, K. E., Ren, J., Ibanes, S., Malenka, R. C., Kremer, E. J., & Luo, L. (2015). Viral-genetic tracing of the input-output organization of a central noradrenaline circuit. Nature, 524(7563), 88-92. https://doi.org/10.1038/nature14600
Sierra-Mercado, D., Padilla-Coreano, N., & Quirk, G. J. (2011). Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear. Neuropsychopharmacology, 36(2), 529-538. https://doi.org/10.1038/npp.2010.184
Thompson, B. M., Baratta, M. V., Biedenkapp, J. C., Rudy, J. W., Watkins, L. R., & Maier, S. F. (2010). Activation of the infralimbic cortex in a fear context enhances extinction learning. Learning & Memory, 17(11), 591-599. https://doi.org/10.1101/lm.1920810
Weinberger, N. M., Gold, P. E., & Sternberg, D. B. (1984). Epinephrine enables pavlovian fear conditioning under anesthesia. Science, 223(4636), 605-607. https://doi.org/10.1126/science.6695173