簡易檢索 / 詳目顯示

研究生: 黃玟翰
Huang, Wen-Han
論文名稱: 再利用焚化飛灰熔渣於水泥砂漿之影響探討
The effects of Vitrification Slag from Incineration Fly Ash on the Properties of Cement Mortars
指導教授: 陳盈良
Chen, Ying-Liang
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 98
中文關鍵詞: 焚化飛灰熔渣水泥砂漿粒料抗壓強度田口法
外文關鍵詞: MSWI fly ash, vitrification slag, mortar, aggregate, compressive strength, Taguchi method
相關次數: 點閱:103下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 垃圾焚化之後空污系統會蒐集大量的焚化飛灰,由於含有大量的有害物質不易處理,因此如何穩定甚至再利用將是一個重要的課題。焚化飛灰經過高溫熔融處理後產生的熔渣擁有穩定的化學性質以及適合的物理強度,因此適合作為水泥砂漿之粒料。
    本研究通過篩分析,發現熔渣的粒徑主要聚集於1.18~4.75mm區間,20BA、30BA、50BA、30GL的細度模數分別為4.17、4.31、4.22、4.43,遠大於CNS法規規定的2.3~3.1,綜合上述兩組數據得知熔渣粒徑是要大於法規規定細粒料粒徑的。
    將細粒料以光學顯微鏡拍攝,以軟體進行面積、周長、最長Feret直徑、最短Feret直徑測量,計算出粒料的長寬比、圓度來比較其形狀發現,熔渣的長寬比會隨著粒徑變小而增加,而中白石與標準砂並無此現象,中白石的長寬比大約與大粒徑的熔渣相近,而標準砂的長寬比則較小。無論是熔渣、中白石、標準砂的粒徑都沒有對其圓度有顯著的影響,標準砂有最小的圓度,熔渣的圓度則最大。綜合2個形狀指標得知熔渣的形狀是較中白石標準砂不規則的。
    本研究於固定水膠比、骨膠比等配比的情況下,將熔渣以替代率25%、50%、75%、100%的比例替代水泥砂漿細粒料。流度方面少數組別有略微下降,但是大部分的都是提升的。抗壓強度部分所有的組別均是符合CNS 78的抗壓強度標準,大部分組別為替代率越大抗壓強度越低的趨勢,其中20BA與50BA在替代率25%時呈現抗壓強度下降的情況。密度則是替代熔渣後有略微上升,而30GL的上升幅度較其他三種熔渣要小。
    以田口法探討水膠比、骨膠比、粒料種類與替代率的影響。綜合S/N比(信號/誤差比)和變異數分析可得知,水膠比對流度有最大的影響,水膠比越大流度越高,骨膠比次之,骨膠比越小流度越大,其餘兩項參數影響不大。抗壓強度在1天齡期時水膠比有絕對的影響力,水膠比越小抗壓強度越高,28天齡期時則是粒料的性質為主導,替代率越高抗壓強度越低。
    總結來說,本研究透過熔渣替代水泥砂漿細粒料,發現水泥砂漿的抗壓強度與流度均符合法規的要求值,因此初步判斷其可以再利用於混凝土的建材,達成永續發展的目的。

    After waste incineration, the air pollution system will collect a large amount of incineration fly ash. Since it contains a large amount of harmful substances and is difficult to handle, how to stabilize and even reuse it will be an important issue. The slag produced by incineration fly ash after high-temperature melting treatment has stable chemical properties and suitable physical strength, so it is suitable as a pellet for cement mortar.
    Through sieve analysis in this study, it was found that the particle size of molten slag was mainly concentrated in the range of 1.18~4.75mm, and the fineness modulus of 20BA, 30BA, 50BA, and 30GL were 4.17, 4.31, 4.22, and 4.43, which were much larger than the 2.3 specified by the CNS regulations. ~3.1, based on the above two sets of data, it is known that the particle size of slag is larger than the particle size of fine granular material specified by regulations.
    The effects of water-binder ratio, bone-binder ratio, pellet type and replacement rate were investigated by Taguchi method. Based on the S/N ratio (signal/error ratio) and variance analysis, it can be known that the water-cement ratio has the greatest influence on fluidity, the greater the water-cement ratio, the higher the fluidity, followed by the bone-cement ratio, and the smaller the bone-cement ratio The larger it is, the other two parameters have little effect. The water-binder ratio has an absolute influence on the compressive strength at the age of 1 day. The smaller the water-binder ratio, the higher the compressive strength. At the age of 28 days, the properties of the pellets dominate, and the higher the replacement rate, the higher the compressive strength. lower.
    To sum up, this study found that the compressive strength and fluidity of cement mortar meet the requirements of the law by substituting slag for cement mortar fine-grained materials. Therefore, it is preliminarily judged that it can be reused as a building material for concrete to achieve sustainable development purpose.

    摘要 I SUMMARY III 致謝 X 目錄 XI 表目錄 XIV 圖目錄 XVI 第一章 前言 1 1-1 研究動機與目的 1 1-2 研究內容 2 第二章 文獻回顧 4 2-1 焚化灰渣的產出與處理方式 4 2-1-1 焚化飛灰的種類與性質 5 2-1-2 焚化飛灰的危害 8 2-1-3 焚化飛灰處理方式 9 2-2 熔融法處理焚化飛灰 11 2-2-1 熔融處理設備 11 2-2-2 熔融處理反應機制 18 2-2-3 熔渣種類與性質 20 2-2-4 重金屬 20 2-2-5 熔渣資源化 21 2-3 混凝土的性質 21 2-3-1 混凝土的發展 21 2-3-2 混凝土的製程與種類 22 2-3-3 混凝土性質 23 2-4 粒料性質對混凝土的影響 31 2-4-1 形狀與尺寸 31 2-4-2 粒料的物理特性 34 2-5 小結 35 第三章 研究方法與設備 36 3-1 研究架構與流程 36 3-2 研究材料與設備 38 3-2-1 試藥 38 3-2-2 器材 38 3-3 研究分析與方法 39 3-3-1 實驗設計 39 3-3-2 分析方法 42 第四章 結果與討論 48 4-1 熔渣的基本特性分析 48 4-1-1 化學性質分析 48 4-1-2 熔渣粒料物理特性分析 54 4-1-3 小節 69 4-2 熔渣作為水泥砂漿粒料之影響探討 70 4-2-1 砂漿試體製備程序調整 70 4-2-2 熔渣添加對砂漿性質之影響 72 4-2-3 田口法實驗設計 79 4-2-4 小節 85 4-3 熔渣作為水泥砂漿細粒料對於水泥砂漿體積變化的影響 85 第五章 結論與建議 89 5-1 結論 89 5-2 建議 90 參考文獻 91

    1. 行政院環境保護署,焚化廠基本資料,2022。
    2. Bertolini, L.; Carsana, M.; Cassago, D.; Quadrio Curzio, A.; Collepardi, M. MSWI ashes as mineral additions in concrete. Cement and Concrete Research 34 (10), 1899-1906, 2004.
    3. Chen, Y.; Xu, L.; Tan, S. N.; Sun, X.; Deng, Y.; Yang, W. Solidification and multi-cytotoxicity evaluation of thermally treated MSWI fly ash. Journal of Hazardous Materials 388, 122041, 2020.
    4. Chimenos, J. M.; Segarra, M.; Fernández, M. A.; Espiell, F. Characterization of the bottom ash in municipal solid waste incinerator. Journal of Hazardous Materials 64 (3), 211-222, 1999.
    5. Dou, X.; Ren, F.; Nguyen, M. Q.; Ahamed, A.; Yin, K.; Chan, W. P.; Chang, V. W.-C. Review of MSWI bottom ash utilization from perspectives of collective characterization, treatment and existing application. Renewable and Sustainable Energy Reviews 79, 24-38, 2017.
    6. Iino, S.; Tatsuichi, S.; Miyawaki, K. Characterization of metal concentration, heavy metal elution, and desalination behavior of municipal solid waste incineration bottom and grate sifting deposition ash based on particle size. Journal of Material Cycles and Waste Management 23 (1), 341-357, 2021.
    7. Chang, Y.-M.; Fan, W.-P.; Dai, W.-C.; Hsi, H.-C.; Wu, C.-H.; Chen, C.-H. Characteristics of PCDD/F content in fly ash discharged from municipal solid waste incinerators. Journal of Hazardous Materials 192 (2), 521-529, 2011.
    8. De Boom, A.; Degrez, M.; Hubaux, P.; Lucion, C. MSWI boiler fly ashes: Magnetic separation for material recovery. Waste Management 31 (7), 1505-1513, 2011.
    9. Lam, C. H.; Ip, A. W.; Barford, J. P.; McKay, G. Use of incineration MSW ash: a review. Sustainability 2 (7), 1943-1968, 2010.
    10. Mangialardi, T. Disposal of MSWI fly ash through a combined washing-immobilisation process. Journal of Hazardous Materials 98 (1), 225-240, 2003.
    11. Dhadse, S.; Kumari, P.; Bhagia, L. Fly ash characterization, utilization and Government initiatives in India -A review. Journal of Scientific and Industrial Research.67:11-18, 2008.
    12. Caserini, S.; Monguzzi, A. M. PCDD/Fs emissions inventory in the Lombardy Region: results and uncertainties. Chemosphere 48 (8), 779-786, 2002.
    13. Chen, W.-S.; Chang, F.-C.; Shen, Y.-H.; Tsai, M.-S.; Ko, C.-H. Removal of chloride from MSWI fly ash. Journal of Hazardous Materials 237-238, 116-120, 2012.
    14. Glasser, F. P. Fundamental aspects of cement solidification and stabilisation. Journal of Hazardous Materials 52 (2), 151-170, 1997.
    15. Shiota, K.; Nakamura, T.; Takaoka, M.; Aminuddin, S. F.; Oshita, K.; Fujimori, T. Stabilization of lead in an alkali-activated municipal solid waste incineration fly ash–Pyrophyllite-based system. Journal of Environmental Management 201, 327-334, 2017.
    16. Yu, S.; Du, B.; Baheiduola, A.; Geng, C.; Liu, J. HCB dechlorination combined with heavy metals immobilization in MSWI fly ash by using n-Al/CaO dispersion mixture. Journal of Hazardous Materials 392, 122510, 2020.
    17. Nishida, K.; Nagayoshi, Y.; Ota, H.; Nagasawa, H. Melting and stone production using MSW incinerated ash. Waste Management 21 (5), 443-449, 2001.
    18. Huber, F.; Herzel, H.; Adam, C.; Mallow, O.; Blasenbauer, D.; Fellner, J. Combined disc pelletisation and thermal treatment of MSWI fly ash. Waste Management 73, 381-391, 2018.
    19. Wu, S.; Xu, Y.; Sun, J.; Cao, Z.; Zhou, J.; Pan, Y.; Qian, G. Inhibiting evaporation of heavy metal by controlling its chemical speciation in MSWI fly ash. Fuel 158, 764-769, 2015.
    20. Weibel, G.; Eggenberger, U.; Kulik, D. A.; Hummel, W.; Schlumberger, S.; Klink, W.; Fisch, M.; Mäder, U. K. Extraction of heavy metals from MSWI fly ash using hydrochloric acid and sodium chloride solution. Waste Management 76, 457-471, 2018.
    21. Tang, J.; Steenari, B.-M. Leaching optimization of municipal solid waste incineration ash for resource recovery: A case study of Cu, Zn, Pb and Cd. Waste Management 48, 315-322, 2016.
    22. Huang, T.; Liu, L.; Zhou, L.; Yang, K. Operating optimization for the heavy metal removal from the municipal solid waste incineration fly ashes in the three-dimensional electrokinetics. Chemosphere 204, 294-302, 2018.
    23. Chen, W.; Kirkelund, G. M.; Jensen, P. E.; Ottosen, L. M. Electrodialytic extraction of Cr from water-washed MSWI fly ash by changing pH and redox conditions. Waste Management 71, 215-223, 2018.
    24. Krebs, W.; Bachofen, R.; Brandl, H. Growth stimulation of sulfur oxidizing bacteria for optimization of metal leaching efficiency of fly ash from municipal solid waste incineration. Hydrometallurgy 59 (2), 283-290, 2001.
    25. Yang, J.; Wang, Q.; Wang, Q.; Wu, T. Heavy metals extraction from municipal solid waste incineration fly ash using adapted metal tolerant Aspergillus niger. Bioresource Technology 100 (1), 254-260, 2009.
    26. Ishigaki, T.; Nakanishi, A.; Tateda, M.; Ike, M.; Fujita, M. Bioleaching of metal from municipal waste incineration fly ash using a mixed culture of sulfur-oxidizing and iron-oxidizing bacteria. Chemosphere 60 (8), 1087-1094, 2005.
    27. Sakai, S.-I.; Hiraoka, M. Municipal solid waste incinerator residue recycling by thermal processes. Waste Management 20 (2), 249-258, 2000.
    28. Ito, T. Vitrification of fly ash by swirling-flow furnace. Waste Management 16 (5), 453-460, 1996.
    29. Kuo, Y.-M.; Lin, T.-C.; Tsai, P.-J.; Lee, W.-J.; Lin, H.-Y. Fate of polycyclic aromatic hydrocarbons during vitrification of incinerator ash in a coke bed furnace. Chemosphere 51 (4), 313-319, 2003.
    30. Bandyopadhyay, R.; Gupta, S.; Lindblom, B.; Jonsson, S.; French, D.; Sahajwalla, V. Assessment of ash deposition tendency in a rotary kiln using Thermo-mechanical analysis and Experimental Combustion Furnace. Fuel 135, 301-307, 2014.
    31. Gandhewar, V. R.; Bansod, S. V.; Borade, A. B. Induction furnace–a review. International Journal of Engineering and Technology 3 (4), 277-284, 2011.
    32. Ecke, H.; Sakanakura, H.; Matsuto, T.; Tanaka, N.; Lagerkvist, A. State‐of‐the‐art treatment processes for municipal solid waste incineration residues in Japan. Waste Management and Research 18 (1), 41-51, 2000.
    33. Wong, G.; Gan, M.; Fan, X.; Ji, Z.; Chen, X.; Wang, Z. Co-disposal of municipal solid waste incineration fly ash and bottom slag: A novel method of low temperature melting treatment. Journal of Hazardous Materials 408, 124438, 2021.
    34. Feng, C.; Chu, M.; Tang, J.; Tang, Y.; Liu, Z. Effect of CaO/SiO2 and Al2O3 on viscous behaviors of the titanium-bearing blast furnace slag. Steel Research International 87 (10), 1274-1283, 2016.
    35. Ma, W.; Fang, Y.; Chen, D.; Chen, G.; Xu, Y.; Sheng, H.; Zhou, Z. Volatilization and leaching behavior of heavy metals in MSW incineration fly ash in a DC arc plasma furnace. Fuel 210, 145-153, 2017.
    36. Yang, J.; Xiao, B.; Boccaccini, A. R. Preparation of low melting temperature glass–ceramics from municipal waste incineration fly ash. Fuel 88 (7), 1275-1280, 2009.
    37. Ni, G.; Zhao, P.; Jiang, Y.; Meng, Y. Vitrification of MSWI fly ash by thermal plasma melting and fate of heavy metals. Plasma Science and Technology 14 (9), 813, 2012.
    38. Wang, Q.; Yan, J.-H.; Chi, Y.; Li, X.-D.; Lu, S.-Y. Application of thermal plasma to vitrify fly ash from municipal solid waste incinerators. Chemosphere 78 (5), 626-630, 2010.
    39. Chae, J.-S.; Choi, S.-A.; Kim, Y.-H.; Oh, S.-C.; Ryu, C.-K.; Ohm, T.-I. Experimental study of fry-drying and melting system for industrial wastewater sludge. Journal of Hazardous Materials 313, 78-84, 2016.
    40. 鄭大偉、林凱隆,國科會,垃圾焚化灰渣電漿熔融之熔渣再利用技術研究(1/2), NSC 95-2221-E-027-057-MY2,2006.8.1~2007.7.31。
    41. Eid, M. S.; Saleh, H. M. Characterizations of Cement and Modern Sustainable Concrete Incorporating Different Waste Additives. Sustainability of Concrete with Synthetic and Recycled Aggregates. IntechOpen, 2021.
    42. Mogetta, M. A new date for concrete in Rome. The Journal of Roman Studies 105, 1-40, 2015.
    43. Jackson, M. D.; Logan, J. M.; Scheetz, B. E.; Deocampo, D. M.; Cawood, C. G.; Marra, F.; Vitti, M.; Ungaro, L. Assessment of material characteristics of ancient concretes, Grande Aula, Markets of Trajan, Rome. Journal of Archaeological Science 36 (11), 2481-2492, 2009.
    44. Hall, C. On the history of portland cement after 150 years. Journal of Chemical Education 53 (4), 222, 1976.
    45. Mouli, M.; Khelafi, H. Performance characteristics of lightweight aggregate concrete containing natural pozzolan. Building and Environment 43 (1), 31-36, 2008.
    46. Siddique, R. Performance characteristics of high-volume Class F fly ash concrete. Cement and Concrete Research 34 (3), 487-493, 2004.
    47. Papayianni, I.; Tsohos, G.; Oikonomou, N.; Mavria, P. Influence of superplasticizer type and mix design pinductively couple plasma optical emission spectrometryarameters on the performance of them in concrete mixtures. Cement and Concrete Composites 27 (2), 217-222, 2005.
    48. Trauchessec, R.; Mechling, J.-M.; Lecomte, A.; Roux, A.; Le Rolland, B. Hydration of ordinary Portland cement and calcium sulfoaluminate cement blends. Cement and Concrete Composites 56, 106-114, 2015.
    49. Rejeb, S. K. Improving compressive strength of concrete by a two-step mixing method. Cement and Concrete Research 26 (4), 585-592, 1996.
    50. Alawode, O.; Idowu, O. Effects of water-cement ratios on the compressive strength and workability of concrete and lateritic concrete mixes. The Pacific Journal of Science and Technology 12 (2), 99-105, 2011.
    51. Faroug, F.; Szwabowski, J.; Wild, S. Influence of superplasticizers on workability of concrete. Journal of Materials in Civil Engineering 11 (2), 151-157, 1999.
    52. Topçu, İ. B.; Elgün, V. B. Influence of concrete properties on bleeding and evaporation. Cement and Concrete Research 34 (2), 275-281, 2004.
    53. Khan, Z. A.; Al-Abdul Wahab, H. I.; Asi, I.; Ramadhan, R. Comparative study of asphalt concrete laboratory compaction methods to simulate field compaction. Construction and Building Materials 12 (6), 373-384, 1998.
    54. Raheem, A. A.; Soyingbe, A. A.; Emenike, A. J. Effect of curing methods on density and compressive strength of concrete. International Journal of Applied Science and Technology 3 (4), 2013.
    55. Fujiwara, T. Effect of aggregate on drying shrinkage of concrete. Journal of Advanced Concrete Technology 6 (1), 31-44, 2008.
    56. Singh, S. B.; Munjal, P.; Thammishetti, N. Role of water/cement ratio on strength development of cement mortar. Journal of Building Engineering 4, 94-100, 2015.
    57. Popovics, S.; Ujhelyi, J. Contribution to the concrete strength versus water-cement ratio relationship. Journal of Materials in Civil Engineering 20 (7), 459-463, 2008.
    58. Poon, C. S.; Lam, C. S. The effect of aggregate-to-cement ratio and types of aggregates on the properties of pre-cast concrete blocks. Cement and Concrete Composites 30 (4), 283-289, 2008.
    59. Ouda, A. S. Development of high-performance heavy density concrete using different aggregates for gamma-ray shielding. Progress in Nuclear Energy 79, 48-55, 2015.
    60. Hoseini, M.; Bindiganavile, V.; Banthia, N. The effect of mechanical stress on permeability of concrete: A review. Cement and Concrete Composites 31 (4), 213-220, 2009.
    61. Peng, Z.; Shi, C.; Shi, Z.; Lu, B.; Wan, S.; Zhang, Z.; Chang, J.; Zhang, T. Alkali-aggregate reaction in recycled aggregate concrete. Journal of Cleaner Production 255, 120238, 2020.
    62. James, A.; Bazarchi, E.; Chiniforush, A. A.; Aghdam, P. P.; Hosseini, M. R.; Akbarnezhad, A.; Martek, I.; Ghodoosi, F. Rebar corrosion detection, protection, and rehabilitation of reinforced concrete structures in coastal environments: A review. Construction and Building Materials 224, 1026-1039, 2019.
    63. Neville, A. The confused world of sulfate attack on concrete. Cement and Concrete Research 34 (8), 1275-1296, 2004.
    64. Yuan, Q.; Liu, Z.; Zheng, K.; Ma, C. Chapter 3 - Portland cement concrete. In Civil Engineering Materials, Yuan, Q., Liu, Z., Zheng, K., Ma, C. Eds.; Elsevier, 2021; pp 59-204.
    65. Kelham, S. 12 - Acid, soft water and sulfate attack. In Advanced Concrete Technology, Newman, J., Choo, B. S. Eds.; Butterworth-Heinemann, 2003; pp 1-12.
    66. Rocco, C. G.; Elices, M. Effect of aggregate shape on the mechanical properties of a simple concrete. Engineering Fracture Mechanics 76 (2), 286-298, 2009.
    67. Leite, M. B.; Figueire do Filho, J. G. L.; Lima, P. R. L. Workability study of concretes made with recycled mortar aggregate. Materials and Structures 46 (10), 1765-1778, 2013.
    68. Hu, J.; Stroeven, P. Shape characterization of concrete aggregate. Image Analysis and Stereology 25 (1), 43-53, 2006.
    69. Kwan, A. K. H.; Mora, C. F.; Chan, H. C. Particle shape analysis of coarse aggregate using digital image processing. Cement and Concrete Research 29 (9), 1403-1410, 1999.
    70. Zhou, Y.; Jin, H.; Wang, B. Modeling and mechanical influence of meso-scale concrete considering actual aggregate shapes. Construction and Building Materials 228, 116785, 2019.
    71. Siregar, A.; Rafiq, M. I.; Mulheron, M. Experimental investigation of the effects of aggregate size distribution on the fracture behaviour of high strength concrete. Construction and Building Materials 150, 252-259, 2017.
    72. Guerzou, T.; Mebrouki, A.; Castro-Gomes, J. Influence of Pre-Saturation of Recycled Aggregates on Concrete Workability and Strength. International Journal of Engineering Research in Africa 42, 76-85, 2019.
    73. Mahmoud, E.; Masad, E. Experimental methods for the evaluation of aggregate resistance to polishing, abrasion, and breakage. Journal of Materials in Civil Engineering 19 (11), 977-985, 2007.
    74. Rith, M.; Kim, Y. K.; Lee, S. W. Characterization of long-term skid resistance in exposed aggregate concrete pavement. Construction and Building Materials 256, 119423, 2020.
    75. Woodall, W. H.; Koudelik, R.; Tsui, K.-L.; Kim, S. B.; Stoumbos, Z. G.; Carvounis, C. P. A review and analysis of the Mahalanobis—Taguchi system. Technometrics 45 (1), 1-15, 2003.
    76. Kuo, C.-Y.; Freeman, R. B. Imaging indices for quantification of shape, angularity, and surface texture of aggregates. Transportation Research Record 1721 (1), 57-65, 2000.
    77. Lin, K. L. Feasibility study of using brick made from municipal solid waste incinerator fly ash slag. Journal of Hazardous Materials 137 (3), 1810-1816, 2006.
    78. Lechler, P. J.; Desilets, M. O. A review of the use of loss on ignition as a measurement of total volatiles in whole-rock analysis. Chemical Geology 63 (3), 341-344, 1987.
    79. 黃隆昇,國科會,焚化爐底碴前處理時間對瀝青混凝土工程性質之影響,NSC101-2221-E366-010,2012。
    80. Li, C.-T.; Huang, Y.-J.; Huang, K.-L.; Lee, W.-J. Characterization of slags and ingots from the vitrification of municipal solid waste incineration ashes. Industrial & Engineering Chemistry Research 42 (11), 2306-2313, 2003.
    81. Soliman, N. A.; Tagnit-Hamou, A. Using glass sand as an alternative for quartz sand in UHPC. Construction and Building Materials 145, 243-252, 2017.
    82. Majidi, B.; Melo, J.; Fafard, M.; Ziegler, D.; Alamdari, H. Packing density of irregular shape particles: DEM simulations applied to anode-grade coke aggregates. Advanced Powder Technology 26 (4), 1256-1262, 2015.
    83. Zhang, C.; Hou, Z.; Chen, C.; Zhang, Y.; Mechtcherine, V.; Sun, Z. Design of 3D printable concrete based on the relationship between flowability of cement paste and optimum aggregate content. Cement and Concrete Composites 104, 103406, 2019.
    84. Kim, J. K.; Lee, C. S. Prediction of differential drying shrinkage in concrete. Cement and Concrete Research 28 (7), 985-994, 1998.
    85. Li, Y.; Wang, R.; Li, S.; Zhao, Y.; Qin, Y. Resistance of recycled aggregate concrete containing low- and high-volume fly ash against the combined action of freeze–thaw cycles and sulfate attack. Construction and Building Materials 166, 23-34, 2018.
    86. Bulatović, V.; Melešev, M.; Radeka, M.; Radonjanin, V.; Lukić, I. Evaluation of sulfate resistance of concrete with recycled and natural aggregates. Construction and Building Materials 152, 614-631, 2017.

    無法下載圖示 校內:不公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE