| 研究生: |
廖經富 Liao, Jing-Fu |
|---|---|
| 論文名稱: |
開發螺旋藻培養程序以進行藻藍素之生產 Developing cultivation process of Spirulina platensis for the production of C-phycocyanin |
| 指導教授: |
張嘉修
Chang, Jo-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 螺旋藻 、藻藍素 、光源 、光照度 、亮暗週期 、養藻廢液 、跑道式反應器 、放大培養 、三原色分析 |
| 外文關鍵詞: | Spirulina platensis, phycocyanin (C-PC), LED, light wavelength, light-dark frequency, wastewater, photobioreactor design, raceway pond, RGB analysi |
| 相關次數: | 點閱:113 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自工業革命之後,石油的大量使用以及溫室氣體的大量排放導致溫室效應漸趨嚴重,同時尋找替代能源之議題也逐漸受到重視,近年來以藻類進行生物固碳之方法受到越來越多的重視,尤其以螺旋藻為最有潛力的藻種。由於螺旋藻除了有高生長速率的特性之外,還可在鹼性環境下生長,因此非常適合用來進行煙道氣排放CO2的減量。螺旋藻可有效利用光合作用將CO2固定,轉為富含藻藍素之藻體,經適當的萃取之後,可將藻藍素應用於各種商業用途,如食品添加劑、食品染色劑、保健食品、化妝品、醫藥螢光標記等領域。因此,以螺旋藻進行生物固碳併行藻藍素之生產,實為一石二鳥的方案。
本研究首先進行光反應器的改善,主要是探討不同的光源、光波長以及亮暗週期對於藻體生長、藻藍素以及生產成本之影響。光源測試結果顯示,利用LED取代一般日光燈管TL5當作光源在相同光照強度下並不對藻體生長有任何影響,且對於藻藍素之含量有些許的提升(從14%到16%),而光波長則還是以白光為最佳條件,但當亮暗週期從60:0 (min:min)下降至30:30 (min:min)時可以提升藻體對於光源之光合作用效率,並降低生產藻體及藻藍素之成本。
本研究亦利用微藻養殖廢液當作營養源來進行廢液回收併行養藻之可行性探討,分別進行了不同養藻廢液來源、不同置換比例以及額外補充氮源之測試。結果顯示在25%廢液置換率下,不論是養殖MB-1還是ESP-31之廢液皆不影響藻體之生長以及藻藍素之含量,由於ESP-31的養殖廢液顏色較深,並有些許的異味,因而選定以MB-1之廢液進行更深入之探討。實驗結果顯示,由25%置換比例增加至50%以及75%後,培養液中的營養源逐漸不足,而導致螺旋藻之生長速率以及藻藍素含量皆下降。最後選定以25%之MB-1養殖廢液進行添加額外氮源之測試,結果顯示經由額外添加氮源 (0.045M)可以些微的提升藻藍素之含量 (由11.9%上升至12.3%)。
本研究接著嘗試放大螺旋藻培養規模至50L操作體積,並觀察規模放大對藻藍素生產之影響,並選定對於螺旋藻的培養較適合的跑道式光生物反應器進行放大之測試。結果顯示,在反應器中八個不同位置測量出的藻體濃度差距不大,代表反應器之混和還算良好,並無藻體在死角位置沉澱的現象,因此進一步導入於實驗室規模下獲得最佳之實驗條件,進行螺旋藻放大養殖之測試及並觀察藻藍素生產之效能。
另外,本研究亦建構了創新的即時測定藻藍素含量之方法,利用藻體內含物的不同會導致藻體有不同顏色之特性,進行了RGB三原色分析儀之測定,再藉由傳統萃取藻藍素之方法以及應用吸光度計來測定藻藍素之含量所得之數據與三原色分析儀之數據進行比對,經回歸後得到不錯之檢量線(R2值達0.98),可準確估算藻藍素之含量,對於即時監控藻體生長及藻藍素生產之狀況,有極大之幫助。
Global climate change has become a serious problem due to the increasing greenhouse gas emissions. The effective ways towards efficient energy conversion, reduction of carbon dioxide emissions and carbon dioxide fixation are one of the most critical global issues at present. Recently, using microalgae, especially Spirulina platensis for biofixation of CO2 has been considered as a promising way, not only to reduce the greenhouse gases but also to produce useful bioproducts. With its characteristics such as high growth rate, efficient carbon dioxide fixation ability and capability to survive under alkaline condition, S. platensis is the most suitable microorganism used for CO2 biofixation. Spirulina platensis is also rich in C-phycocyanin (C-PC), which can be applied as colorants, nutritious supplements, diagnosis reagent, and pharmaceuticals. Therefore, there is undeniably great potential of using S. platensis to fix carbon dioxide and simultaneously for C-PC production.
The study was aimed to redesign the light condition used in flat-type photobioreactor and focus on the influence of light source (from TL5 to LED), light wavelength and light-dark frequency on S. platensis. The results show that using LED as light source could slightly improve the phycocyanin content but did not influence the cell growth (0.7 g/L/d). The white light wavelength was found to be the best for the growth of S. platensis. The efficiency of light capturing increased as the light-dark frequency decrease from 60 min:0 min to 30 min:30 min, as the C-PC production per light energy increases from 466 to 566 mg C-PC/kW-hr.
This study also used wastewater from microalgae culture as a part of nutrition sources and water sources to cultivate S. platensis. The effect of wastewater from different microalgae culture, medium replacement ratio, and the addition of nitrogen source on cell growth and C-PC production of S. platensis was investigated. The results show that there is no difference between fresh medium and 25% wastewater from Mb-1 culture and 25% wastewater from ESP-31 culture, giving a biomass productivity of about 0.5 g/L/d and a C-PC content of 13%. This study chose Mb-1 culture as the wastewater source for the test of medium replacement ratio on semi-batch culture. As the wastewater ratio was increased from 25% to 50% and 75%, both the biomass concentration and phycocyanin content decreased from 0.5 to 0.3 g/L/d and 13% to 5%, respectively. When the medium was amended with 25% of wastewater from Mb-1 culture, the addition of nitrogen source (0.9375 g/L) can slightly increase the phycocyanin content.
Large-scale cultivation using 50L raceway photobioreactor (PBR) was also carried out for the biomass and phycocyanin production. The results show that the microalgae concentration in various positions in the raceway PBR has no significant difference, indicating sufficient mixing of the raceway PBR without the occurrence of microalgae precipitation at certain position in the PBR. The maximum biomass concentration can reach up to 1.8 g/L, and the biomass productivity was about 0.1 g/L/d which is higher than the reported performance in the literatures. The best culture conditions obtained from small scale cultivation were then adapted into the 50L raceway PBR to determine the efficiency of biomass and phycocyanin production in large scale cultivation. The conditions applied were as follows: amendment of 25% wastewater from Mb-1 culture; with 0.045M nitrogen concentration; 30 min:30 min light-dark frequency.. It was found that the growth of S. platensis in the large scale raceway PBR with the wastewater-amended medium decreased from 0.1 g/L to 0.08 g/L, while the C-PC content increased from 14.1 to 18.5%.
A rapid phycocyanin content estimation method was also developed using RGB measurement. . The RGB measurement was conducted on the microalgae samples and the calibration of RGB data and the phycocyanin content determined with conventional method (e.g., UV-VIS measurement) was constructed via linear regression. The results show that a good calibration between RGB data and C-PC content with a R2 value of 0.98. Hence, this rapid C-PC measurement method allows instantaneous monitoring of the cell growth condition and the phycocyanin content of S. platensis without any delay.
In summary, the strategies of photobioreactor design and wastewater utilization can help in minimizing power and chemical costs by 98% and 27%, respectively. In addition to cost reduction, our approach also has extra benefits of wastewater treatment and recycling of water resources . Therefore, with the proposed cultivation system, S. platensis provides great potential in low-cost phycocyanin production with increased environmental sustainability.
Allen, M.M., Smith, A.J. 1969. Nitrogen Chlorosis in Blue-Green Algae. Archiv Fur Mikrobiologie, 69(2), 114-&.
Anderson, G.D., Hauser, S.D., McGarity, K.L., Bremer, M.E., Isakson, P.C., Gregory, S.A. 1996. Selective inhibition of cyclooxygenase (COX)-2 reverses inflammation and expression of COX-2 and interleukin 6 in rat adjuvant arthritis. Journal of Clinical Investigation, 97(11), 2672-2679.
Antelo, F.S., Anschau, A., Costa, J.A.V., Kalil, S.J. 2010. Extraction and Purification of C-phycocyanin from Spirulina platensis in Conventional and Integrated Aqueous Two-Phase Systems. Journal of the Brazilian Chemical Society, 21(5), 921-926.
Aspee, A., Lissi, E.A. 2000. Kinetics and mechanism of the chemiluminescence associated with the free radical-mediated oxidation of amino acids. Luminescence, 15(5), 273-282.
Asting, A.G., Caren, H., Andersson, M., Lonnroth, C., Lagerstedt, K., Lundholm, K. 2011. COX-2 gene expression in colon cancer tissue related to regulating factors and promoter methylation status. Bmc Cancer, 11.
Aydemir, O., Soysaldi, E., Kale, Y., Kavurt, S., Bas, A.Y., Demirel, N. 2014. Body Temperature Changes of Newborns Under Fluorescent Versus LED Phototherapy. Indian Journal of Pediatrics, 81(8), 751-754.
Babu, T.S., Kumar, A., Varma, A.K. 1991. Effect of Light Quality on Phycobilisome Components of the Cyanobacterium Spirulina-Platensis. Plant Physiology, 95(2), 492-497.
Badger, M.R., Price, G.D. 1992. The Co2 Concentrating Mechanism in Cyanobacteria and Microalgae. Physiologia Plantarum, 84(4), 606-615.
Badger, M.R., Price, G.D. 2003. CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. Journal of Experimental Botany, 54(383), 609-622.
Beams, H.W., Kessel, R.G. 1977. Physical-Properties of Blue-Green-Algae - Ultracentrifugation and Electron-Microscope Studies. Protoplasma, 92(3-4), 229-242.
Belay, A., Ota, Y., Miyakawa, K., Shimamatsu, H. 1993. Current Knowledge on Potential Health Benefits of Spirulina. Journal of Applied Phycology, 5(2), 235-241.
Benedetti, S., Rinalducci, S., Benvenuti, F., Francogli, S., Pagliarani, S., Giorgi, L., Micheloni, M., D'Amici, G.M., Zolla, L., Canestrari, F. 2006. Purification and characterization of phycocyanin from the blue-green alga Aphanizomenon flos-aquae. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 833(1), 12-18.
Borowitzka, M.A. 1999. Commercial production of microalgae: ponds, tanks, tubes and fermenters. Journal of Biotechnology, 70(1-3), 313-321.
Calvin, M. 1989. 40 Years of Photosynthesis and Related Activities. Photosynthesis Research, 21(1), 3-16.
Carvalho, J.C.M., Francisco, F.R., Almeida, K.A., Sato, S., Converti, A. 2004. Cultivation of Arthrospira (spirulina) platensis (Cyanophyceae) by fed-batch addition of ammonium chloride at exponentially increasing feeding rates. Journal of Phycology, 40(3), 589-597.
Chacon-Lee, T.L., Gonzalez-Marino, G.E. 2010. Microalgae for "Healthy" Foods-Possibilities and Challenges. Comprehensive Reviews in Food Science and Food Safety, 9(6), 655-675.
Chen, Y., Wang, J.F., Zhang, W., Chen, L., Gao, L.L., Liu, T.Z. 2013. Forced light/dark circulation operation of open pond for microalgae cultivation. Biomass & Bioenergy, 56, 464-470.
Chiaramonti, D., Prussi, M., Casini, D., Tredici, M.R., Rodolfi, L., Bassi, N., Zittelli, G.C., Bondioli, P. 2013. Review of energy balance in raceway ponds for microalgae cultivation: Re-thinking a traditional system is possible. Applied Energy, 102, 101-111.
Costa, J.A.V., Linde, G.A., Atala, D.I.P., Mibielli, G.M., Kruger, R.T. 2000. Modelling of growth conditions for cyanobacterium Spirulina platensis in microcosms. World Journal of Microbiology & Biotechnology, 16(1), 15-18.
Demarsac, N.T. 1977. Occurrence and Nature of Chromatic Adaptation in Cyanobacteria. Journal of Bacteriology, 130(1), 82-91.
El-Baky, H.H.A., El Baz, F.K., El-Baroty, G.S. 2008. Characterization of nutraceutical compounds in blue green alga Spirulina maxima. Journal of Medicinal Plants Research, 2(10), 292-300.
Eriksen, N.T. 2008. Production of phycocyanin - a pigment with applications in biology, biotechnology, foods and medicine. Applied Microbiology and Biotechnology, 80(1), 1-14.
Geetha, K., Gunasekaran, P. 2010. Optimization of Nutrient Medium Containing Agricultural Waste for Xylanase Production by Bacillus pumilus B20. Biotechnology and Bioprocess Engineering, 15(5), 882-889.
Glazer, A.N. 1994. Phycobiliproteins - a Family of Valuable, Widely Used Fluorophores. Journal of Applied Phycology, 6(2), 105-112.
Govindjee, Wong, D., Prezelin, B.B., Sweeney, B.M. 1979. Chlorophyll-a Fluorescence of Gonyaulax-Polyedra Grown on a Light-Dark Cycle and after Transfer to Constant Light. Photochemistry and Photobiology, 30(3), 405-411.
Grobbelaar, J.U., Nedbal, L., Tichy, V. 1996. Influence of high frequency light/dark fluctuations on photosynthetic characteristics of microalgae photoacclimated to different light intensities and implications for mass algal cultivation. Journal of Applied Phycology, 8(4-5), 335-343.
Hemlata, Fatma, T. 2009. Screening of Cyanobacteria for Phycobiliproteins and Effect of Different Environmental Stress on Its Yield. Bulletin of Environmental Contamination and Toxicology, 83(4), 509-515.
Hiyama, R., Gisusi, S., Harada, A. 2011. Evaluation of waste mushroom medium from cultivation of shiitake mushroom (Lentinula edodes) as feedstock of enzymic saccharification. Journal of Wood Science, 57(5), 429-435.
Ho, S.H., Chen, C.Y., Lee, D.J., Chang, J.S. 2011. Perspectives on microalgal CO2-emission mitigation systems - A review. Biotechnology Advances, 29(2), 189-198.
Holmes, M.D., Chen, W.Y., Schnitt, S.J., Collins, L., Colditz, G.A., Hankinson, S.E., Tamimi, R.M. 2011. COX-2 expression predicts worse breast cancer prognosis and does not modify the association with aspirin. Breast Cancer Research and Treatment, 130(2), 657-662.
Hou, H.J.M., Mauzerall, D. 2011. Listening to PS II: Enthalpy, entropy, and volume changes. Journal of Photochemistry and Photobiology B-Biology, 104(1-2), 357-365.
Hreiz, R., Sialve, B., Morchain, J., Escudie, R., Steyer, J.P., Guiraud, P. 2014. Experimental and numerical investigation of hydrodynamics in raceway reactors used for algaculture. Chemical Engineering Journal, 250, 230-239.
James, S.C., Boriah, V. 2010. Modeling Algae Growth in an Open-Channel Raceway. Journal of Computational Biology, 17(7), 895-906.
Jin, H.F., Lim, B.R., Lee, K. 2006. Influence of nitrate feeding on carbon dioxide fixation by microalgae. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 41(12), 2813-2824.
Kaplan, A., Reinhold, L. 1999. CO2 concentrating mechanisms in photosynthetic microorganisms. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 539-+.
Karkos, P.D., Leong, S.C., Karkos, C.D., Sivaji, N., Assimakopoulos, D.A. 2011. Spirulina in Clinical Practice: Evidence-Based Human Applications. Evidence-Based Complementary and Alternative Medicine, 1-4.
Karl, D., Michaels, A., Bergman, B., Capone, D., Carpenter, E., Letelier, R., Lipschultz, F., Paerl, H., Sigman, D., Stal, L. 2002. Dinitrogen fixation in the world's oceans. Biogeochemistry, 57(1), 47-+.
Khodja, N.I., Auger, C., Koch, E., Schini-Kerth, V. 2011. Crataegus special extract WS1442 prevents aging-related endothelial dysfunction in the mesenteric artery: Role of COX-dependent EDCFs. Naunyn-Schmiedebergs Archives of Pharmacology, 383, 45-45.
Kosaric, N., Nguyen, H.T., Bergougn.Ma. 1974. Growth of Spirulina-Maxima Algae in Effluents from Secondary Wastewater Treatment Plants. Biotechnology and Bioengineering, 16(7), 881-896.
Lazar, D. 2003. Chlorophyll a fluorescence rise induced by high light illumination of dark-adapted plant tissue studied by means of a model of photosystem II and considering photosystem II heterogeneity. Journal of Theoretical Biology, 220(4), 469-503.
Le Calve, B., Lallemand, B., Perrone, C., Lenglet, G., Depauw, S., Van Goietsenoven, G., Bury, M., Vurro, M., Herphelin, F., Andolfi, A., Zonno, M.C., Mathieu, V., Dufrasne, F., Van Antwerpen, P., Poumay, Y., David-Cordonnier, M.H., Evidente, A., Kiss, R. 2011. In vitro anticancer activity, toxicity and structure-activity relationships of phyllostictine A, a natural oxazatricycloalkenone produced by the fungus Phyllosticta cirsii. Toxicology and Applied Pharmacology, 254(1), 8-17.
Leema, J.T.M., Kirubagaran, R., Vinithkumar, N.V., Dheenan, P.S., Karthikayulu, S. 2010. High value pigment production from Arthrospira (Spirulina) platensis cultured in seawater. Bioresource Technology, 101(23), 9221-9227.
Litvin, F.F., Zvalinskii, V.I. 1991. Photosynthesis in Relation to Light-Intensity and Wavelength, and the Problem of Chromatic and Nonchromatic Adaptation. Soviet Plant Physiology, 38(4), 455-463.
Ma, X.C., Zhou, W.G., Fu, Z.Q., Cheng, Y.L., Min, M., Liu, Y.H., Zhang, Y.K., Chen, P., Ruan, R. 2014. Effect of wastewater-borne bacteria on algal growth and nutrients removal in wastewater-based algae cultivation system. Bioresource Technology, 167, 8-13.
Maeda, S., Badger, M.R., Price, G.D. 2002. Novel gene products associated with NdhD3/D4-containing NDH-1 complexes are involved in photosynthetic CO2 hydration in the cyanobacterium, Synechococcus sp PCC7942. Molecular Microbiology, 43(2), 425-435.
Markou, G., Vandamme, D., Muylaert, K. 2014. Microalgal and cyanobacterial cultivation: The supply of nutrients. Water Research, 65, 186-202.
Matondo, J.I., Peter, G., Msibi, K.M. 2004. Evaluation of the impact of climate change on hydrology and water resources in Swaziland: Part I. Physics and Chemistry of the Earth, 29(15-18), 1181-1191.
Miyanaga, K., Seki, M., Furusaki, S. 2000. Analysis of pigment accumulation heterogeneity in plant cell population by image-processing system. Biotechnology and Bioengineering, 67(4), 493-497.
Moraes, C.C., Burkert, J.F.D., Kalil, S.J. 2010. C-Phycocyanin Extraction Process for Large-Scale Use. Journal of Food Biochemistry, 34, 133-148.
Morales, E.J., Gonzalez, L.G., Otero, A.O., Vazquez, A.V., Resto, W. 2005. Which factor influences algae growth in a marine aquarium the most: Light or nitrate concentration? Abstracts of Papers of the American Chemical Society, 230, U792-U792.
Nah, W.H., Koh, I.K., Ahn, H.S., Kim, M.J., Kang, H.G., Jun, J.H., Gye, M.C. 2012. Effect of Spirulina maxima on spermatogenesis and steroidogenesis in streptozotocin-induced type I diabetic male rats. Food Chemistry, 134(1), 173-179.
Niizawa, I., Heinrich, J.M., Irazoqui, H.A. 2014. Modeling of the influence of light quality on the growth of microalgae in a laboratory scale photo-bio-reactor irradiated by arrangements of blue and red LEDs. Biochemical Engineering Journal, 90, 214-223.
Oi, V.T., Glazer, A.N., Stryer, L. 1982. Fluorescent Phycobiliprotein Conjugates for Analyses of Cells and Molecules. Journal of Cell Biology, 93(3), 981-986.
Padyana, A.K., Bhat, V.B., Madyastha, K.M., Rajashankar, K.R., Ramakumar, S. 2001. Crystal structure of a light-harvesting protein C-phycocyanin from Spirulina platensis. Biochemical and Biophysical Research Communications, 282(4), 893-898.
Palenik, B. 2001. Chromatic adaptation in marine Synechococcus strains. Applied and Environmental Microbiology, 67(2), 991-994.
Patel, A., Mishra, S., Pawar, R., Ghosh, P.K. 2005. Purification and characterization of C-Phycocyanin from cyanobacterial species of marine and freshwater habitat. Protein Expression and Purification, 40(2), 248-255.
Price, G.D. 2011. Inorganic carbon transporters of the cyanobacterial CO2 concentrating mechanism. Photosynthesis Research, 109(1-3), 47-57.
Pulz, O., Gross, W. 2004. Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 65(6), 635-648.
Ravelonandro, P.H., Ratianarivo, D.H., Joannis-Cassan, C., Isambert, A., Raherimandimby, M. 2008. Influence of light quality and intensity in the cultivation of Spirulina platensis from Toliara (Madagascar) in a closed system. Journal of Chemical Technology and Biotechnology, 83(6), 842-848.
Reddy, C.M., Bhat, V.B., Kiranmai, G., Reddy, M.N., Reddanna, P., Madyastha, K.M. 2000. Selective inhibition of cyclooxygenase-2 by C-phycocyanin, a biliprotein from Spirulina platensis. Biochemical and Biophysical Research Communications, 277(3), 599-603.
Reddy, M.C., Subliashini, J., Mahipal, S.V.K., Bhat, V.B., Reddy, P.S., Kiranmai, G., Madyastha, K.M., Reddanna, P. 2003. C-Phycocyanin, a selective cyclooxygenase-2 inhibitor, induces apoptosis in lipopolysaccharide-stimulated RAW 264.7 macrophages. Biochemical and Biophysical Research Communications, 304(2), 385-392.
Romay, C., Gonzalez, R., Ledon, N., Remirez, D., Rimbau, V. 2003. C-phycocyanin: A biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Current Protein & Peptide Science, 4(3), 207-216.
Sarada, R., Pillai, M.G., Ravishankar, G.A. 1999. Phycocyanin from Spirulina sp: influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin. Process Biochemistry, 34(8), 795-801.
Sarrafzadeh, M.H., La, H.J., Lee, J.Y., Cho, D.H., Shin, S.Y., Kim, W.J., Oh, H.M. 2015. Microalgae biomass quantification by digital image processing and RGB color analysis. Journal of Applied Phycology, 27(1), 205-209.
Sato, N., Shinji, K., Mizuno, M., Nozaki, K., Suzuki, M., Makishima, S., Shiroishi, M., Onoda, T., Takahashi, F., Kanda, T., Amano, Y. 2010. Improvement in the productivity of xylooligosaccharides from waste medium after mushroom cultivation by hydrothermal treatment with suitable pretreatment. Bioresource Technology, 101(15), 6006-6011.
Sforza, E., Simionato, D., Giacometti, G.M., Bertucco, A., Morosinotto, T. 2012. Adjusted Light and Dark Cycles Can Optimize Photosynthetic Efficiency in Algae Growing in Photobioreactors. Plos One, 7(6).
Sharma, N.K., Tiwari, S.P., Tripathi, K., Rai, A.K. 2011. Sustainability and cyanobacteria (blue-green algae): facts and challenges. Journal of Applied Phycology, 23(6), 1059-1081.
Shibata, M., Katoh, H., Sonoda, M., Ohkawa, H., Shimoyama, M., Fukuzawa, H., Kaplan, A., Ogawa, T. 2002. Genes essential to sodium-dependent bicarbonate transport in cyanobacteria - Function and phylogenetic analysis. Journal of Biological Chemistry, 277(21), 18658-18664.
Shimamatsu, H. 2004. Mass production of Spirulina, an edible microalga. Hydrobiologia, 512(1-3), 39-44.
Silveira, S.T., Burkert, J.F.M., Costa, J.A.V., Burkert, C.A.V., Kalil, S.J. 2007. Optimization of phycocyanin extraction from Spirulina platensis using factorial design. Bioresource Technology, 98(8), 1629-1634.
Sloth, J.K., Wiebe, M.G., Eriksen, N.T. 2006. Accumulation of phycocyanin in heterotrophic and mixotrophic cultures of the acidophilic red alga Galdieria sulphuraria. Enzyme and Microbial Technology, 38(1-2), 168-175.
Sokolov, K., Devenski, P. 1992. Spectrophotometric Study of Green Microalgae Biomass Color. Acta Biotechnologica, 12(4), 277-280.
Song, C.S. 2006. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catalysis Today, 115(1-4), 2-32.
Spolaore, P., Joannis-Cassan, C., Duran, E., Isambert, A. 2006. Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 87-96.
Su, C.H., Fu, C.C., Chang, Y.C., Nair, G.R., Ye, J.L., Chu, I.M., Wu, W.T. 2008. Simultaneous estimation of chlorophyll a and lipid contents in microalgae by three-color analysis. Biotechnology and Bioengineering, 99(4), 1034-1039.
Tamagnini, P., Leitao, E., Oliveira, P., Ferreira, D., Pinto, F., Harris, D.J., Heidorn, T., Lindblad, P. 2007. Cyanobacterial hydrogenases: diversity, regulation and applications. Fems Microbiology Reviews, 31(6), 692-720.
Turner, L., Houghton, J.D., Brown, S.B. 1997. Purification and identification of apophycocyanin alpha and beta subunits from soluble protein extracts of the red alga Cyanidium caldarium. Light exposure is not a prerequisite for biosynthesis of the protein moiety of this photosynthetic accessory pigment. Planta, 201(1), 78-83.
Vonshak, A. 1990. Recent Advances in Microalgal Biotechnology. Biotechnology Advances, 8(4), 709-727.
Waller, P., Ryan, R., Kacira, M., Li, P.W. 2012. The algae raceway integrated design for optimal temperature management. Biomass & Bioenergy, 46, 702-709.
Walter, A., de Carvalho, J.C., Soccol, V.T., de Faria, A.B.B., Ghiggi, V., Soccol, C.R. 2011. Study of Phycocyanin Production from Spirulina platensis Under Different Light Spectra. Brazilian Archives of Biology and Technology, 54(4), 675-682.
Wu, X.X., Merchuk, J.C. 2004. Simulation of algae growth in a bench scale internal loop airlift reactor. Chemical Engineering Science, 59(14), 2899-2912.
Yi, Z.L., Huang, W.F., Ren, Y., Onac, E., Zhou, G.F., Peng, S., Wang, X.J., Li, H.H. 2014. LED lights increase bioactive substances at low energy costs in culturing fruiting bodies of Cordyceps militaris. Scientia Horticulturae, 175, 139-143.
You, T., Barnett, S.M. 2004. Effect of light quality on production of extracellular polysaccharides and growth rate of Porphyridium cruentum. Biochemical Engineering Journal, 19(3), 251-258.
Zhu, X.G., Alba, R., de Sturler, E. 2009. A simple model of the Calvin cycle has only one physiologically feasible steady state under the same external conditions. Nonlinear Analysis-Real World Applications, 10(3), 1490-1499.
Zou, Z., Lopez, D.L., Kanost, M.R., Evans, J.D., Jiang, H.B. 2006. Comparative analysis of serine protease-related genes in the honey bee genome: possible involvement in embryonic development and innate immunity. Insect Molecular Biology, 15(5), 603-614.
校內:2025-12-31公開