簡易檢索 / 詳目顯示

研究生: 周仕旻
Chou, Shih-Min
論文名稱: 射頻磁控濺鍍具摻雜之氧化鋅透明導電膜成長特性與其p-n同/異質接面之製作
Growth Characteristics of Doped ZnO Transparent Conducting Films and the Fabrication of p-n Homo/Hetero-junctions
指導教授: 洪敏雄
Hon, Min-Hsiung
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 137
中文關鍵詞: 透明導電膜氧化鋅熱處理太陽能電池
外文關鍵詞: Transparent Conducting Films, solar cells, ZnO, heat treatment
相關次數: 點閱:119下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 透明導電膜兼具低電阻率及高可見光穿透率,為光電產業應用廣泛的透明電極材料。其中以ZnO為母材之薄膜,由於Zn蘊藏量豐富且薄膜圖形蝕刻容易,同時藉由施體摻雜可穩定及改善薄膜電性,故其在光電元件應用上極具發展潛力。此外,p型ZnO薄膜的製備帶動ZnO同質接面的研究風潮,使得ZnO薄膜在半導體材料的應用上更為廣泛。同時, ZnO與Cu2O所製備之異質接面,在太陽能電池的研究也是近年來ZnO應用熱門課題。
    本研究以2wt%Al2O3-ZnO陶瓷為靶材,利用射頻磁控濺鍍法製備透明導電薄膜。全文共分三部分,第一部分為探討ZnO:Al薄膜結構及性質與製程參數及熱處理條件之關係,並應用於酒精氣體感測。第二部分探討p型ZnO之製作,以期增廣ZnO之應用性。利用N2O與Ar混合氣體作為反應氣體,探討不同體積分率與Al-N codoped ZnO薄膜對結構及光電性質之影響,並探討熱處理對性質改善之可行性。第三部分為在不同優選面氧化亞銅上製備ZnO:Al 薄膜作為異質接面,探討ZnO:Al製作之參數對於異質接面結構與光伏特性之影響。
    研究結果得知,ZnO:Al薄膜沈積速率隨濺鍍功率的增加而加快,且利用濺鍍法製備之薄膜皆呈(0002)優先成長,並不因濺鍍功率與基板溫度而改變。基板加溫及鍍膜熱處理後,ZnO:Al薄膜之(0002)繞射峰往高角度位移,發現薄膜殘留應力釋放。此外由表面形態觀察亦發現因加熱晶粒成長現象。當濺鍍功率為120 W時,薄膜之電阻率較低,在基板溫度為250℃時,可獲得進一步的降低。500℃氫氣氛熱處理1 hr的ZnO:Al薄膜,具有最低之電阻率5.15×10-4 Ω•cm,電子濃度及移動率分別為8.03×1020 cm-3及15.1 cm2V-1s-1。在氧氣氛下熱處理,薄膜電阻率明顯升高。對於ZnO:Al薄膜穿透率之量測發現,在不同濺鍍功率及基板溫度下,薄膜之穿透率在可見光範圍(380 nm至760 nm)內平均達90%以上。而氫氣氛熱處理後之薄膜,短波長範圍之穿透率明顯提升,且其吸收端有往短波長藍移現象;在氧氣氛熱處理,薄膜穿透率則明顯下降,且吸收端有往長波長紅移之情況。在酒精氣體感測應用上,ZnO:Al薄膜具有快速反應及回復的特性,對不同濃度之酒精氣體皆具感測再現性。當酒精氣體濃度為400ppm操作溫度為250℃時,ZnO:Al薄膜之靈敏度約為20。
    不同N2O/(N2O+Ar)體積分率,Al-N codoped ZnO薄膜沈積速率隨體積分率上升,速率明顯減緩,同時薄膜(0002)繞射峰強度降低且寬化,顯示薄膜結晶性降低,但薄膜仍具(0002)優先成長之特性,且並無其他繞射峰出現。薄膜之導電形態,隨N2O體積分率提高至20%,薄膜由n型轉為p型;體積分率為30%時,p型Al-N codoped ZnO薄膜有較低之電阻值2.57 Ω•cm,電洞濃度及移動率分別為2.53×1017 cm-3及9.6 cm2V-1s-1;體積分率提升至60%以上時,薄膜則由p型反轉為n型。不同體積分率所得之Al-N codoped ZnO薄膜之可見光穿透率平均皆在85%以上,通入N2O氣體時,吸收端有紅移現象。然而在Ar、O2及N2氣氛中熱處理後,薄膜之p型導電形態消失,可知N之摻雜並不穩定。
    製備ZnO:Al/Cu2O異質接面時,因氧化亞銅之(111)與ZnO:Al薄膜間晶格失配程度較低,ZnO:Al薄膜成長以(0002)為優選面;而在氧化亞銅之(200)上,有當基板加溫時,ZnO:Al薄膜有(0002)優選生長之傾向。在光照條件為83.2 mW/cm2下,ZnO:Al/Cu2O異質接面之光伏特性的量測,在室溫時,ZnO:Al/(111)-orientated Cu2O因晶格失配較小而有較高之轉換效率。適當降低各薄膜之厚度,ZnO:Al(200 nm)/(111)-orientated Cu2O(1 μm)異質接面具有較佳之轉換效率0.22%,其開路電壓、短路電流密度及填充因子分別為0.15 V、4.3 mA/cm2及0.29。

    Due to the low resistivity and high transmittance in visible spectrum, transparent conducting films are comprehensively applied in optoelectronics. Among them, ZnO is easily etched in process and the electrical properties can be further improved by donor doping as well as the abundance of Zn, making ZnO-based films more potential. Besides, the fabrication of ZnO-based homojunction using p-type ZnO films indicates the extensive applications of ZnO. In addition, the recent research of ZnO/Cu2O heterojunctions in solar cells also attracts many interesting attentions.
    In this study, 2wt%Al2O3-ZnO is used as target to deposit transparent conducting films by RF magnetron sputtering system. Three issues investigated in this study are (1) the effects of deposition and annealing parameters on the structural, electrical and optical properties of ZnO:Al films as well as the applications of ZnO:Al films in the ethanol gas sensor detection; (2) the fabrication of p-type Al-N co-doped ZnO films by different N2O/(N2O+Ar) volume ratios and the effects of annealing condition on the structural, electrical and optical properties of Al-N co-doped ZnO; (3) the effects of deposition parameters on the structural and photovoltaic properties of ZnO:Al/Cu2O heterojunctions for (200) and (111)-orientation Cu2O.
    From the results, the ZnO:Al film grows with the preferred (0002) plane and its deposition rate increases as the RF power increases. After the substrate heating and post-deposition annealing, the grain growth is observed and (0002) diffraction peak shifts to high 2θ position, indicating the relaxation of residual stress in the films. As the RF power used is 120 W, the ZnO:Al film has a low resistivity that can further be reduced with the substrate heating at 250℃. After annealing at 500℃ in H2 for 1 hr, the lowest resistivity of 5.15×10-4 Ω•cm is obtained with the electron concentration and mobility of 8.03×1020 cm-3 and 15.1 cm2V-1s-1, respectively. For various RF powers and substrate temperatures, the transmittance of ZnO:Al films is higher than 90% in average during the visible spectrum. After annealing in O2, the absorption edge has a red-shift; however, it has a blue shift for annealing in H2. For the application as a ethanol gas sensor, ZnO:Al films have a quick response-recovery characteristics and the sensitivity is about 20 with the ethanol concentration of 400 ppm at the operating temperature of 250℃.
    For the fabrication of p-type Al-N co-doped ZnO films, the deposition rate decreases as the N2O/(N2O+Ar) volume ratio increases. At the same time, the (0002) diffraction peak broadens but decreases in intensity, indicating the degradation of the thin-film crystallinity. As the volume ratio increases to 20%, the conduction type turns from n type to p type. With the ratio of 30%, p-type Al-N co-doped ZnO film has a low resistivity of 2.57 Ω•cm with the hole concentration and mobility of 2.53×1017 cm-3及9.6 cm2V-1s-1, respectively. When the ratio is larger than 60%, the conduction type returns to n type. For various N2O volume ratios, the transmittance of Al-N co-doped ZnO films is higher than 85% and the absorption edge shows a red-shift with the introduction of N2O.
    Using (111)-orientated Cu2O films as substrates for the fabrication of ZnO:Al/Cu2O heterojunctions, the ZnO:Al films deposited on Cu2O films with or without substrate heating show a preferred (0002) due to the small lattice mismatch. For (200)-orientated Cu2O films, substrate heating is helpful for the growth of ZnO:Al films with a preferred (0002). Under the illumination condition of 83.2 mW/cm2, the conversion efficiency of ZnO:Al/(111)-orientated Cu2O heterojunction is higher than that of ZnO:Al/(200)-orientated Cu2O heterojunction. With an appropriate modification of thickness, ZnO:Al(200 nm)/(111)-orientated Cu2O(1 μm) heterojunction has the best conversion efficiency of 0.22% in this study with the open-circuit voltage of 0.15 V, short-circuit current density of 4.3 mA/cm2 and fill-factor of 0.29.

    中文摘要 I 英文摘要 III 總目錄 VI 表目錄 IX 圖目錄 X 英漢名詞與符號對照表 XIV 第一章 緒論 1 1-1 透明導電膜 1 1-2 研究動機與目的 3 第二章 理論基礎 5 2-1 電漿與射頻磁控濺鍍原理 5 2-1-1 電漿原理 5 2-1-2 射頻磁控濺鍍 6 2-2 薄膜成核及成長理論 10 2-3 氧化鋅的透明導電性質 11 2-4氧化亞銅薄膜之電化學沈積 18 第三章 實驗方法與步驟 21 3-1 實驗流程 21 3-2 濺鍍系統 22 3-3 原料選擇 25 3-4 鍍膜參數及步驟 26 3-5鍍膜熱處理 26 3-6 特殊織構之氧化亞銅薄膜製作 26 3-7鍍膜性質分析 27 3-8鍍膜感測性質量測 28 3-9 ZnO:Al/Cu2O p-n異質接面電性之量測 29 第四章 以射頻磁控濺鍍法製備鋁摻雜氧化鋅薄膜 31 4-1 濺鍍功率對ZnO:Al薄膜結構及性質之影響 31 4-1-1 ZnO:Al薄膜結構及表面形態 31 4-1-2 ZnO:Al薄膜電性及穿透率 36 4-2 基板溫度對ZnO:Al薄膜結構及性質之影響 41 4-2-1 ZnO:Al薄膜結構及表面形態 41 4-2-2 ZnO:Al薄膜電性及穿透率 46 4-3 熱處理對ZnO:Al薄膜結構及性質之影響 49 4-3-1 ZnO:Al薄膜結構及表面形態 49 4-3-2 ZnO:Al薄膜電性及穿透率 53 4-4 ZnO:Al薄膜之酒精氣體感測 60 4-5 小結 65 第五章 反應性射頻磁控濺鍍製備p型Al-N共摻ZnO薄膜 67 5-1 N2O/(N2O+Ar)比例與Al-N共摻ZnO薄膜結構及性質 68 5-1-1 Al-N共摻ZnO薄膜結構及表面形態 68 5-1-2 Al-N共摻ZnO薄膜電性 72 5-1-3 Al-N共摻ZnO薄膜成分 75 5-1-4 Al-N共摻ZnO薄膜穿透率 79 5-2 熱處理對Al-N共摻ZnO薄膜結構及性質之影響 81 5-3 氧化鋅p-n同質接面 87 5-4 小結 89 第六章 ZnO:Al/Cu2O p-n異質接面 90 6-1 具(200)及(111)織構之Cu2O薄膜成長 90 6-2 濺鍍參數對ZnO:Al/Cu2O p-n異質接面結構之影響 96 6-2-1 ZnO:Al薄膜結構 96 6-2-2 ZnO:Al薄膜表面及橫截面 102 6-3 Cu2O之優選面對異質接面性質之影響 106 6-4 小結 120 第七章 總結論 121 參考文獻 124 個人資料 136

    1. B. H. Lee, J. G. Kim, S. W. Cho and S. H. Lee, “Effect of process parameters on the characteristics of indium tin oxide thin film for flat panel display application”, Thin Solid Films, 302 (1997) 25.
    2. C. C. Wu, C. I. Wu, J. C. Sturm and A. Kahn, “Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting device”, Appl. Phys. Lett., 70 (1997) 1348.
    3. S. A. Van Slyke, C. H. Chen and S. W. Tang, “Organic electroluminescent device with improved stability”, Appl. Phys. Lett., 69 (1996) 2160.
    4. C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu and J. F. Chen, “Small-signal frequency response of long-wavelength vertical-cavity lasers”, Photonics Technology Letters, IEEE, 13 (2001) 1041.
    5. R. Scheer, T. Walter, H. W. Schock, M. L. Fearheiley and H. L. Lewerenz, “CuInS2 based on thin film solar cell with 10.2% efficiency”, Appl. Phys. Lett., 63 (1993) 3294.
    6. K. Ramanathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward and A. Duta, “Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells”, Prog. Photovolt., 11 (2003) 225.
    7. O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schöpe, C. Beneking, H. Wagner, A. Löffl and H. W. Schock, “Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells”, Thin Solid Films, 351 (1999) 247.
    8. K. H. Kim and C. G. Park, “Electrical properties and gas-sensing behavior of SnO2 films prepared by chemical vapor deposition”, J. Electrochem. Soc., 138 (1991) 2408.
    9. J. L. Lossen, “Transparent conducting films”, Physics of Thin Films, 9 (1997) 1.
    10. 李玉華,”透明導電膜及其應用”,科儀新知,12卷第一期,1990,p.94.
    11. H. L. Hartnagel, A. L. Dawar, A. K. Jain and C. Jagadish, “Semiconducting Transparent Thin Films”, published by Institute of Physics Publication, 1995, p.1
    12. T. J. Contts, D. L. Young and X. Li, “Characterization of transparent conducting oxides”, MRS Bull. 25 (2000) 58.
    13. H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi and H. Hosono, “P-type electrical conduction in transparent thin films of CuAlO2”, Nature, 389 (1997) 939.
    14. J. M. Bian, X. M. Li, C. Y. Zhang, W. D. Yu and X. D. Gao, “P-type ZnO films by monodoping of nitrogen and ZnO-based p-n homojunctions”, Appl. Phys. Lett., 85 (2004) 4070.
    15. M. Joseph, H. Tabata, H. Saeki, K. Ueda and T. Kawai, “Fabrication of the low-resistive p-type ZnO by codoping method”, Physica B, 302-303 (2001) 140.K.
    16. G. Yuan, Z. Ye, Q. Qian, L. Zhu, J. Huang and B. Zhao, “P-type ZnO thin films fabricated by Al-N co-doping method at different substrate temperature”, J. Cryst. Growth, 273 (2005) 451.
    17. Badeker, Ann Phys. (Leipzig), 22(1907) 749.
    18. Y. Djaoued, V. H. Phong, S. Badilescu, P. V. Ashrit, F. E. Girouard and V. V. Truong, “Sol-gel-prepared ITO films for electrochromic systems”, Thin Solid Films, 293 (1997) 108.
    19. V. Vasu and A. Subrahmanyam, “Photovoltaic properties of spray pyrolytic grown indium tin oxide(ITO)/silicon junctions-dependence on substrate temperature”, Semicond. Sci. Technol., 7 (1992) 1471.
    20. B. Vlahovic and M. Persin, “A simple and new modified CVD technique for fabrication of SnO2 films”, J. Phys. D: Appl. Phys., 23 (1990) 1324.
    21. K. Haga, T. Suzuki, Y. Kashiwaba, H. Watanabe, B. P. Zhang and Y. Segawa, “High-quality ZnO films prepared on Si wafer by low-pressure MO-CVD”, Thin Solid Films, 433 (2003) 131.
    22. M. Jachimowski, A. Brudnik and H. Czternastek, “Modified procedure for deposition of ITO films by DC sputtering”, J. Phys. D: Appl. Phys., 18 (1985) L145.
    23. K. C. Park, D. Y. Ma and K. H. Kim, “The physical properties of Al-doped zinc oxide films prepared by RF magnetron sputtering”, Thin Solid Films, 305 (1997) 201.
    24. A. O. Dikovska, P. A. Atanasov, T. R. Stoyanchov, A. T. Andreev, E. I. Karakoleva and B. S. Zafirova, “Pulsed laser deposited ZnO film on side-polished fiber as a gas sensing element”, Appl. Opt., 46 (2007) 2481.
    25. J. B. Choi, J. H. Kim, K. A. Jeon and S. Y. Lee, “Properties of ITO films on glass fabricated by pulsed laser deposition”, Mater. Sci. Eng. B, 102 (2003) 376.
    26. T. Minami, H. Nanto and S. Takata, “High conductive and transparent alumina doped zinc oxid thin films prepared by RF magnetron sputtering”, Jpn. J. Appl. Phys., 23 (1984) L280.
    27. G. A. Hirata, J. Mckittrick, J. Siqueiros, O. A. Lopez, T. Cheeks, O. Contreras and J. Y. Yi, “High transmittance-low resistivity ZnO:Ga films deposited by laser ablation”, J. Vac. Sci. Technol. A, 14 (1996) 791.
    28. H. Hara, I. Hanada, I. Shiro and I. Yatabe, “Properties of indim zinc oxide thin films on heat withstanding plastic substrate”, J. Vac. Sci. Technol., 22 (2004) 1726.
    29. R. Wang, L. H. King and A. W. Sleight, “Highly conducting transparent thin films based on zinc oxide”, J. Mater. Res., 11 (1996) 1659.
    30. R. Konishi, K. Noda, H. Harada and H. Sasakura, “Preparation of transparent ZnO:Al thin films”, J. Cryst. Growth, 117 (1992) 939.
    31. Z. C. Jin, I. Hamberg and C. G. Granqvist, “Optical properties of sputter-deposited ZnO:Al thin films”, J. Appl. Phys., 64 (1988) 5117.
    32. K. Ellmer, K. Kudella, R. Mientus, R. Schieck and S. Fiechter, “ Influence discharge parameters on the layer properties of reactive magnetron sputtered ZnO:Al films”, Thin Solid Films, 247 (1994) 15.
    33. M. Chen, Z. L. Pei, C. Sun, L. S. Wen and X. Wang, “Surface characterization of transparent conductive oxide Al-doped films”, J. Cryst. Growth, 220 (2000) 254.
    34. 郭旭祥,”ZnO:Al薄膜氣體感測器之研究”,國立成功大學材料科學及工程學系碩士論文,2000,pp. 32-72.
    35. F. Z. Ge, Z. Z. Ye, L. P. Zhu, J. G. Lu, B. H. Zhao, J. Y. Huang, Z. H. Zhang, L. Wang and Z. G. Ji, “Electrical and optical properties of Al-N co-doped p-type zinc oxide films” , J. Cryst. Growth, 268 (2004) 163.
    36. 趙化橋,“等離子體化學與工藝”,中國科技技術大學出版社,合肥,1993,p.112.
    37. S. M Rossnagel, J. J. Cuomo, W. D. Westwood, “Handbook of plasma processing technology”, published by Noyes publication, 1990, p.167.
    38. D. M. Mattox, “Partcle bombardment effects on thin-film deposition: A review”, J. Vac. Sci. Technol. A, 7 (1989) 1105.
    39. 楊錦章,”基礎濺鍍電漿”,電子發展月刊,68期,1983,p.13.
    40. D. S. Rickerby and A. Matthews, “Advanced Surface Coatings: a handbook of surface engineering”, published by Chapman and Hall, New York, 1991, p.103.
    41. J. Venables, “Nucleation and growth of thin films”, Rep. Prog. Phys., 47 (1984) 399.
    42. J. A. Thornton, “Influence of apparatus geometry and deposition conditions on structure and topography of thick sputtered coatings”, J. Vac. Sci. Technol., 11 (1974) 666.
    43. J. A. Thornton, “Influence of substrate temperature and deposition conditions on structure of thick sputtered Cu coatings”, J. Vac. Sci. Technol., 12 (1975) 830.
    44. S. Roy and S. Basu, “Improved zinc oxide film for gas sensor applications”, Bull. Mater. Sci., 25 (2002) 513.
    45. W. C. Shih and R. C. Huang, “Fabrication of high frequency ZnO thin film SAW devices on silicon substrate with a diamond-like carbon buffer layer using RF magnetron sputtering”, Vacuum, 83 (2008) 675.
    46. V. A. L. Roy, A. B. Djurišić, W. K. Chen, J. Gao, H. F. Lui and C. Surya, “Luminescent and structural properties of ZnO nanorods prepared under different conditions”, Appl. Phys. Lett., 83 (2003) 141.
    47. J. Bao, M. A. Zimmler, F. Capasso, X. Wang and Z. F. Ren, “Broadband ZnO single-nanowire light-emitting diode”, Nano Lett., 6 (2006) 1719.
    48. Y. H. Lin, C. C. Lin, J. M. Wu, U. S. Chen, J. R. Chen and H. C. Shih, “Formation and cathodoluminescence of Al:ZnO nanoscrew clusters”, Thin Solid Films, 517 (2008) 1225.
    49. B. H. Choi and H. B. Im, “Optical and electrical properties of Ga2O3-doped ZnO films prepared by r.f. sputtering”, Thin Solid Films, 193-194 (1990) 172.
    50. H. L. Hartnagel, A. L. Dawar, A. K. Jain and C. Jagadish, “Semiconducting Transparent Thin Films”, published by Institute of Physics Publication, 1995, p. 17.
    51. Ü. ÖZgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho and H. Morkoc, “A comprehensive review of ZnO materials and devices”, J. Appl. Phys., 98 (2005) 041301-1.
    52. Y. Igasaki, H. Saito, “The effects of deposition rate on the structure and electrical properties of ZnO:Al films deposited on ( ) oriented sapphire substrates”, J. Appl. Phys., 70 (1991) 3613.
    53. Y. Sato and S. Sato, “Prepared and some properties of nitrogen-mixed ZnO thin films”, Thin Solid Films, 281-282 (1996) 445.
    54. K. K. Kim, H. S. Kim, D. K. Hwang, J. H. Lim, S. J. Park, “Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant”, Appl. Phys. Lett., 83 (2003) 63.
    55. Y. R. Ryu, T. S. Lee, H. W. White, “Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition”, Appl. Phys. Lett., 83 (2003) 87.
    56. T. Yamamoto, H. K. Yoshida, “Physics and control of valence states in ZnO by codoping method”, Physica B, 302-303 (2001) 155.
    57. G. K. Paul, Y. Nawa, H. Sato, T. Sakurai and K. Akimoto, “Defects in Cu2O studied by deep level transient spectroscopy”, Appl. Phys. Lett., 88 (2006) 141901.
    58. M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300K”, Prog. Photovolt., 3 (1995) 189.
    59. J. J. Lofeski, “Theoretical consideration governing the choice of the optimum semiconductor for photovoltaic solar energy conversion”, J. Appl. Phys., 27 (1956) 777.
    60. T. Minami, H. Tanaka, T. Shimakawa, T. Miyata and H. Sato, “High-efficiency oxide heterojunction solar cells using Cu2O sheets”, Jpn. J. Appl. Phys., 43 (2004) L917.
    61. T. Minami, T. Miyata, K. Ihara, Y. Minamino and S. Tsukada, Thin Solid Films, 494 (2006) 47.
    62. S. Ishizuka, K. Suzuki, Y. Okamoto, M. Yanagita, T. Sakurai, K. Akimoto, N. Fujiwara, H. Kobayashi, K. Matsubara and S. Niki, “Polycrystalline n-ZnO/p-Cu2O heterojunctions grown by RF-magnetron sputtering”, Phys. Stat. Sol. (c), 1 (2004) 1067.
    63. A. E. Rakhshani, A. A. Al-Jassar and J. Varghese, “Electrodeposition and characterization of cuprous oxide”, Thin Solid Films, 148 (1987) 191.
    64. J. A. Switzer, C. J. Hung, L. Y. Huang, F. S. Miller, Y. Zhou, E. R. Raub, M. G. Shumsky and E. W. Bohannan, “Potential oscillation during the electrochemical self-assembly of copper/cuprous oxide layered nanostructures”, J. Mater. Res., 13 (1998) 909.
    65. 林冠宇,”電化學沈積之氧化亞銅其結晶結構及光電化學性質”,國立成功大學化學工程學系碩士論文,2005, p. 12
    66. L. C. Wang, N. R. de Tacconi, C. R. Chenthamarakshan, K. Rajeshwar and M. Tao, “Electrodeposited copper oxide films: Effect of bath pH on grain orientation and orientation –dependent interfacial behavior”, Thin Solid Films, 515 (2007) 3090.
    67. D. A. Neamen, “Semiconductor Physics & Devices”, published by McGraw-Hill, Inc., (2002) p.624.
    68. 張榮芳,”反應磁控濺鍍透明導電ZnO:Al膜之成長特性及性質研究”,國立成功大學材料科學及工程學系博士論文,2001,p.35
    69. D. L. Raimondi and E. Kay, “High resistivity transparent ZnO thin films”, J. Vac. Sci. Technol., 7 (1969) 96.
    70. Y. C. Lee, S. Y. Hu, W. Water, K. K. Tiong, Z. C. Feng, Y. C. Chen, J. C. Huang, J. W. Lee, C. C. Huang, J. L. Shen and M. H. Cheng, “Rapid thermal annealing effects on the structural and optical properties of ZnO films deposited on Si substrates”, J. Lumin., 129 (2009) 148.
    71. N. Fujimura, T. Nishihara, S. Goto, J. Xu and T. Ito, “Control of preferred orientation for ZnOx films: Control of self-texture”, J. Cryst. Growth, 130 (1993) 269.
    72. X. T. Hao, J. Ma, D. H. Zhang, Y. G. Yang, H. L. Ma, C. F. Cheng and X. D. Liu, “Comparison of the properties for ZnO:Al films deposited on polyimide and glass substrates”, Mater. Sci. Eng. B, 90 (2002) 50.
    73. S. N. Bai and T. Y. Tseng, “Electrical and optical properties of ZnO:Al thin films grown by magnetron sputtering”, J. Mater. Sci., 20 (2009) 253.
    74. F. M. D Huerle and J. M. E. Harper, “Note on the origin of intrinsic stresses in films deposited via evaporation and sputtering”, Thin Solid Films, 81 (1989) 171
    75. 陳靜怡,”氧化鋅中介層對ITO透明導電膜性質之影響”,國立成功大學材料科學及工程學系碩士論文,2002,p. 14.
    76. N. Serpone, D. Lawless and R. Khairutdinov, J. Phys. Chem., 99 (1995) 16646.
    77. A. P. Roth, J. B. Webb, D. F. Williams, “Absorption edge shift in ZnO thin films at high carrier densities”, Solid State Communications, 39 (1981) 1269.
    78. E. Burstein, “Anomalous optical absorption limit in InSb”, Phys. Rev., 93 (1954) 632.
    79. T. S. Moss, Phys. Soc. London Sect. B, 67 (1954) 775.
    80. 楊明輝,”金屬氧化物透明導電材料的基本原理”,工業材料,179期,2001, p.134.
    81. E. M. Bachari, G. Baud, S. Ben Amor and M. Jacquet, “Structure and optical properties of sputtered ZnO films”, Thin Solid Films, 348 (1999) 165.
    82. R. Kumar, N. Khare, V. Kumar and G. L. Bhalla, “Effect of intrinsic stress on the optical properties of nanostructured ZnO thin films grown by rf magnetron sputtering”, Appl. Surf. Sci., 254 (2008) 6509.
    83. T. Minami, H. Sato, K. Ohashi, T. Tomofuji and S. Takata, “Conduction mechanism of highly conductive and transparent zinc oxide thin films prepared by magnetron sputtering”, J. Cryst. Growth, 117 (1992) 370.
    84. K. Tominaga, M. Kataoka, H. Manabe, T. Ueda and I. Mori, “ Transparent ZnO:Al films prepared by co-sputtering of ZnO:Al with either a Zn or an Al target”, Thin Solid Films, 290 (1996) 84.
    85. H. C. Chen, K. S. Lee and C. C. Lee, “Annealing dependence of residual stress and optical properties of TiO2 thin film deposited by different deposition methods”, Appl. Opt., 47 (2008) C284.
    86. Y. Zhang, G. Du, X. Yang, B. Zhao, Y. Ma, T. Yang, H. C. Ong, D. Liu and S. Yang, “Effect of annealing on ZnO thin films grown on (001) silicon substrate by low-pressure metalorganic chemical vapour deposition”, Semicond. Sci. Technol., 19 (2004) 755.
    87. T. L. Tansley and D. F. Neely, “Adsorption, deposition and conductivity of sputtered zinc oxide thin films”, Thin Solid Films, 121 (1984) 95.
    88. S. A. Studeniki, N. Golego and M. Cocivera, “Carrier mobility and density contributions to photoconductivity transients in polycrystalline ZnO films”, J. Appl. Phys., 87 (2000) 2413.
    89. J. Muller and S. Weissenrieder, “ZnO-thin film chemical sensors”, Fres. J. Anal. Chem., 349 (1994) 380.
    90. I. Stambolova, K. Konstantinov, S. Vassilev, P. Peshev and T. Tsacheva, “Lanthanum doped SnO2 and ZnO thin films sensitive to ethanol and humidity”, Mater. Chem. Phys., 63 (2000) 104.
    91. H. Nanto, T. Minami and S. Takata, “Zinc-oxide thin film ammonia gas sensor with high sensitivity and excellent selectivity”, J. Appl. Phys., 60 (1986) 482.
    92. S. Matsushima, T. Maekawa, J. Tamaki, N. Miura and N. Yamazoe, “Role of additives on alcohol sensing by semiconductor gas sensor”, Chem. Lett., 18 (1989) 845.
    93. K. Ohkawa, T. Karasawa and T. Mitsuyu, “Characteristics of p-type ZnSe layers grown by molecular beam epitaxy with radical doping”, Jpn. J. Appl. Phys., 30 (1991) L152.
    94. C. H. Park, S. B. Zhang and S. H. Wei, “Origin of p-type doping difficulty in ZnO: The impurity perspective”, Phys. Rev. B, 66 (2002) 073202.
    95. A. Hartmann, M. K. Puchert and R. N. Lamb, “influence of copper dopants on the resistivity of ZnO films”, Surface and Interface Analysis, 24 (1996) 671.
    96. Y. Yan, S. B. Zhang and S. T. Pantelides, “Control of doping by impurity chemical potentials: Predictions for p-type ZnO”, Phys. Rev. Lett., 86 (2001) 5723.
    97. L. G. Wang and Alex Zunger, “Cluster-doping Approach for wide-gap semiconductors: The case of p-type ZnO”, Phys. Rev. Lett., 90 (2003) 256401-1.
    98. M. Joseph, H. Tabata, T. Kawai, “ P-type electrical conduction in ZnO thin films by Ga and N codoping”, Jpn. J. Appl. Phys., 38 (1999) L1205.
    99. F. Zhuge, L. P. Zhu, Z. Z. Ye, J. G. Lu, B. H. Zhao, J. Y. Huang, L. Wang, Z. H. Zhang and Z. G. Ji, “ Effects of growth ambient on electrical properties of Al-N co-doped p-type ZnO films”, Thin Solid Films, 476 (2005) 272.
    100. L. Date, K. Radouane, H. Caquineau, B. Despax, J. P. Couderc and M. Youfi, “Analysis of the N2O dissociation by r.f. discharges in a plasma reactor”, Surf. Coating Technol., 116-119 (1999) 1042.
    101. T. M. Barnes, Leaf, S. Hand, C. Fry and C. A. Wolden, “ A comparison of plasma-activated N2/O2 and N2O/O2 mixtures for use in ZnO:N synthesis by chemical vapor deposition”, J. Appl. Phys., 96 (2004) 7036.
    102. S. J. Jiao, Z. Z. Zhang, Y. M. Lu, D. Z. Shen, B. Yao, J. Y. Zhang, B. H. Li, D. X. Zhao, X. W. Fan and Z. K. Tang, “ZnO p-n junction light-emitting diodes fabricated on sapphire substrates”, Appl. Phys. Lett., 88 (2006) 031911.
    103. Y. H. Zhang, “Characterization of as-received hydrophobic treated AlN powder using XPS”, J. Mater. Sci. Lett., 21 (2002) 1603.
    104. J. P. Lin and J. M. Wu, “The effects of annealing processes on electric properties of sol-gel derived Al-doped ZnO films”, Appl. Phys. Lett., 92 (2008) 134103.
    105. Z. Z. Ye, Q. Qian, G. D. Yuan, B. H. Zhao and D. W. Ma, “Effect of oxygen partial pressure ratios on the properties of Al-N co-doped ZnO thin films”, J. Crystal Growth, 274 (2005) 178.
    106. Y. Zhou, J. A. Switzer,“Electrochemical deposition and microtructure of copper (I) oxide films”, Scripta Mater., 38 (1998) 1731.
    107. 林冠宇,”電化學沈積之氧化亞銅其結晶結構及光電化學性質”,國立成功大學化學工程學系碩士論文(2005),p. 51.
    108. 李岳勳,“微/奈米化氧化亞銅之電化學沈積行為及其在鋰離子二次電池之應用”,國立成功大學博士論文,2006,p.58.
    109. K. Akimoto, S. Ishizuka, M. Yanagita, Y. Nawa, G. K. Paul and T. Sakurai, “Thin film deposition of Cu2O and application for solar cells”, Solar Energy, 80 (2006) 715.
    110. T. Ganne, J. Grépin, S. Serror and A. Zaoui, “Cracking behaviour of PVD tungsten coatings deposited on steel substrates”, Acta Materialia, 50 (2002) 4149.
    111. W. M. Sears, E. Fortin and J. B. Webb, “Indium tin oxide/Cu2O photovoltaic cells”, Thin Solid Films, 103 (1983) 303.
    112. S. S. Jeong, A. Mittiga, E. Salza, A. Masci and S. Passerini, “Electrodeposited ZnO/Cu2O heterojunction solar cells”, Electrochimica Acta, 53 (2008) 2226.
    113. A. Mittiga, E. Salza, F. Sarto, M. Tucci and R. Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate”, Appl. Phys. Lett., 88 (2006) 163502.
    114. R. P. Wijesundara, L. D. R. D. Perera, K. D. Jayasuriya, W. Siripala, K. T. L. DeSilva, A. P. Samantilleke and I. M. Dharmadasa, “Sulphidation of electrodeposited cuprous oxide thin films for photovoltaic applications”, Solar Energy Materials & Solar Cells, 61 (2000) 277.
    115. K. Mizuno, M. Izaki, K. Murase, T. Shinagawa, M. Chigane, M. Inaba, A. Tasaka and Y. Awakura, “Structural and electrical characterizations of electrodeposited p-type semiconductor Cu2O films”, J. Electrochem. Soc., 152 (2005) C179.
    116. T. Mahalingam, J. S. P. Chitra, J. P. Chu, S. Velumani and P. J. Sebastian, “Structural and annealing studies of potentiostatically deposited Cu2O thin films”, Solar Energy Materials & Solar Cells, 88 (2005) 209.

    下載圖示 校內:立即公開
    校外:2009-07-28公開
    QR CODE