| 研究生: |
吳佳蓁 Wu, Chia-Chen |
|---|---|
| 論文名稱: |
利用擬真三維地質模型探討降雨與地震對南172線溫泉公路邊坡影響之研究 Application of the 3D Stratigraphic Simulation on Slope Stability Analysis with Rainfall and Earthquake |
| 指導教授: |
陳昭旭
Chen, Chao-Shi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 162 |
| 中文關鍵詞: | 市道172線 、降雨入滲 、真實地震 、三維邊坡穩定分析 |
| 外文關鍵詞: | The Tainan county highway 172, Rainfall infiltration, Real Earthquake record, 3D Slope Stability Analysis |
| 相關次數: | 點閱:56 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討台南市市道172線42K+300處邊坡於不同降雨強度與地震載重條件下之三維邊坡穩定性反應。研究以鑽探岩心資料建構擬真三維地質模型,使GMS (Groundwater Modeling System)建立地層分佈並設定2024年2月5日之地下水位面為初始條件,後續匯入FLAC3D (Fast Lagrangian Analysis of Continua in 3 Dimensions),進行不飽和土壤之降雨入滲與地震動態模擬。
在降雨模擬部分,設定四種日降雨強度情境(80、200、350、500 mm/day),透過FISH語言編寫飽和-不飽和滲流模型,考量基質吸力調整不飽和區之滲透係數與有效應力場,以模擬真實降雨入滲行為。模擬結果顯示,隨降雨強度增加,地層飽和度與孔隙水壓上升,導致有效應力降低,安全係數呈現遞減趨勢,滑動潛勢由淺層擴展至深層,反映降雨入滲為誘發滑動之關鍵因素。空間分布上,其中以N塊體邊坡最明顯,安全係數顯著低於其他區段;相對地,S、M與L塊體區域穩定性良好,滑動潛勢較低。
地震模擬則以2025年1月21日臺南楠西地震(M_L=6.4)為討論重點,採用沄水國小測站(C087)所測之三向地表加速度歷時資料,模擬近場之真實地震事件。模擬採用地震歷時中之十秒資料進行逐秒分析,結果顯示各塊體對地震載重之反應存在差異,其中S、M與L塊體雖於模擬中觀察到局部剪應變率變化與應力重分布,但整體安全係數維持穩定,顯示其崩塌潛勢較低;相對而言,N塊體在模擬期間安全係數明顯下降,顯示其對地震擾動敏感,為本區潛在滑動風險最高之區段。
This study presents a three-dimensional slope stability assessment of the slope located at 42K+300 along County Road 172 in Tainan City under various rainfall intensities and seismic loading conditions, utilizing the strength reduction method. A realistic subsurface geological model and corresponding groundwater table were constructed using the Groundwater Modeling System (GMS), and subsequently imported into FLAC3D (Fast Lagrangian Analysis of Continua in 3 Dimensions) to perform coupled simulations of rainfall infiltration and seismic response in unsaturated soil conditions.
Simulation results under rainfall conditions indicate that increasing rainfall intensity leads to elevated saturation levels and pore water pressure, which in turn reduce effective stress and significantly lower the slope’s safety factor. This promotes the deepening of potential sliding surfaces and highlights rainfall infiltration as a critical triggering mechanism for slope instability. Under seismic loading, slope blocks exhibit differential responses; while S, M, and L blocks show localized changes in shear strain and stress redistribution, their overall safety factors remain relatively stable, suggesting limited failure potential. Conversely, the N block demonstrates a marked decline in safety factor throughout the simulation period, underscoring its heightened susceptibility to failure under both rainfall and seismic influences.
1.Ai, Z., Zhang, H., Wu, S., Jiang, C., Yan, Q., & Ren, Z.“Study on the slope dynamic stability considering the progressive failure of the slip surface under earthquake.”, Frontiers in Earth Science, 10, 981503, 2022.
2.Azocar, K., Hazzard, J., “The influence of curvature on the stability of rock slopes.” Paper presentrd at the 13th ISRM International Congress of Rock Mechanics, 2015.
3.Bishop, A.W., “The use of the slip circle in the stability analysis of slope.” Geotechnique, 5(1), pp.7-17, 1955.
4.Bishop, A.W., “The principle of effective stress.” Teknisk ukeblad, 39, pp.859-863, 1959.
5.Bodman, G.B., Colman, E., “Moisture and energy conditions during downward entry of water into soils.” Soil Science Society of America Journal, 8(C), pp.116-122, 1944.
6.Brooks, R.H., and Corey, A.T., “Hydraulic properties of porous media.” Hydrology Paper, Vol. 3, Colorado State University, Fort Collins, 1964.
7.Chatra, A. S., Dodagoudar, G., & Maji, V., “Numerical modelling of rainfall effects on the stability of soil slopes.” International Journal of Geotechnical Engineering, 2019.
8.Croney, D., Coleman, J., “Soil thermodynamics applied to the movement of moisture in road foundations.” Vol. 3, pp.163-177, 1948.
9.Cruden, Varnes., “Landslide types and processes.” Landslides, investigation and mitigation: special report 247, pp.36-75, 1996.
10.Darcy, H., “Les fontaines publiques de la ville de Dijon: exposition et application des principes à suivre et des formules à employer dans les questions de distribution d'eau. ” Victor dalmont., Vol. 1, 1856.
11.Di Filippo, G., Biondi, G., Cascone, E. , “Influence of earthquake-induced pore-water pressure on the seismic stability of cohesive slopes.”, Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions, pp.2136-2144, 2019.
12.Faheem, H., Cai, F., Ugai, K., Hagiwara, T., “Two-dimensional base stability of excavations in soft soils using FEM.” Computers and Geotechnics, 30(2), pp.141-163, 2003.
13.Fellenius, W., ”Erdstatische berechnungen mit reibung und kohasion.“ Ernst & Sohn, Berlin, 1927.
14.Fredlund, D.G., Morgenstern, N.R., Widger, R., “The shear strength of unsaturated soils.” Canadian geotechnical journal, 15(3), pp.313-321, 1978.
15.Fredlund, D.G., Rahardjo, H., “Soil mechanics for unsaturated soils:” John Wiley & Sons, 1993.
16.Fredlund, D.G., Xing, A., “Equations for the soil-water characteristic curve.” Canadian geotechnical journal, 31(4), pp.521-532, 1994.
17.Fredlund, M.D., Fredlund, D.G., Zhang, L., “Moving from 2D to a 3D unsaturated slope stability analysis.” PanAm Unsaturated Soils, pp.136-145, 2017.
18.Gardner, W.R., “Some steady state solutions of the unsaturated moisture flow equation with application to evaporation from a water Table.” Soil Science, 85, pp.228-232, 1958.
19.Giam, S. K., and Donald, I. B., “Determination of Critical Slip Surfaces for Slopes via Stress-Strain Calculations,” Proceedings of the Fifth Australia-New Zealand Conference on Geomechanics, Sydney, Australia, pp.461-464, 1988.
20.Green, W.H., Ampt, G., “Studies on soil phyics.” The Journal of Agricultural Science, 4(1), pp.1-24, 1911.
21.Griffiths, D., Lane, P., “Slope stability analysis by finite elements.” Géotechnique, 49(3), pp.387-403, 1999.
22.Itasca., “Fast lagrangian analysis of continua in 3 dimension user’s guild.” USA: Itasca Consulting Group, 2009.
23.Itasca., “Fluid-Thermal-Mechanical-Formulation-Mathematical Description.” USA:Itasca Consulting Group, 2024.
24.Janbu, N., “Application of composite slip surfaces for stability analyses.” European Conf. on Stability of Earth Slopes, Stockholm, 3, pp.43-49, 1954.
25.Janbu, N., Bjerrum, L., Kjaernsli, B., “Soil mechanics applied to some engineering problems.” Norwegian Geotechnical Institute, 16, pp.5-26, 1956.
26.Krahn, J., and Fredlund, D.G., “On total matric and osmotic suction.” Soil Science, 115(5), pp.339- 348, 1972.
27.Kuhlemeyer, R. L., Lysmer, J., “Finite element method accuracy for wave propagation problems. ”Journal of the soil mechanics and foundations division, 99(5), pp.421-427, 1973.
28.Li, L., Li, X. a., Li, Y., Li, C., Li, Y., Wang, L., He, Y., and Yao, C., “An analysis of vertical infiltration responses in unsaturated soil columns from permafrost regions.”, Applied Sciences, 14(22), 10195, 2024.
29.Lu, N., and Likos, W.J., “Unsaturated soil mechanics.” John Wiley & Sons, Inc., Hoboken, pp.30-45, 2004.
30.Lysmer, J., Kuhlemeyer, R.L., “Finite dynamic model for infinite media.” Journal of Engineering Mechanics Division, 95, pp.859-878, 1969.
31.Matsui, T., and San, K.C., “Finite element slope stability analysis by shear strength reduction technique.” Soils and foundations, 32(1), pp.59-70, 1992.
32.Mein, R.G., and Larson, C.L., “Modeling Infiltration during a Steady Rain.” Water Resources Research, 9, pp.384-394, 1973.
33.Morgenstern, N.R., Price, V.E., “The analysis of the stability of general slip surfaces.” Geotechnique, 15(1), pp.79-93, 1965.
34.Reginald, Curran, J. H., Yacoub, T.,and Corkum, B., “Stability analysis of rock slopes using the finite element method.”, Proceedings of the ISRM Regional Symposium EUROCK, 2004.
35.Sari, P., Putri, Y., Savitri, Y., Amalia, A., Margini, N. F.,and Nusantara, D., “The comparison between 2-D and 3-D slope stability analysis based on reinforcement requirements.”, International Journal on Advanced Science, Engineering and Information Technology, 10(5), pp.2082-2088, 2020.
36.Spencer, E., “A method of analysis of the stability of embankments assuming parallel interslice forces.” Geotechnique, 17(1), pp.11-26, 1967.
37.Terzaghi, K. v. , “Relation between soil mechanics and foundation engineering.” Proceedings of the International Conference on Soil Mechanics and Foundation Engineering, 1936.
38.Tracy, F. T., “Analytical and numerical solutions of Richards' equation with discussions on relative hydraulic conductivity. ”BoD—Books on demand, 2011.
39.Van Genuchten, M. T., “A Closed Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils.” Soil Science Society of America Journal, 44, pp.892-898, 1980.
40.Van Genuchten, M.T., Nielsen, D., “On describing and predicting the hydraulic properties.” Paper presented at the Annales Geophysicae, 1985.
41.Vanapalli, S.K., Fredlund, D.G., and Pufahl, D.E., “The influence of soil structure and stress history on the soil-water characteristics of a compacted till.” Geotechnique, 49(2), pp.143-159, 1999.
42.Varnes, D. J., “Slope movement types and processes.” Special report, 176, pp.11-33, 1978.
43.Vereecken, H., Weihermüller, L., Assouline, S., Šimůnek, J., Verhoef, A., Herbst, M., Archer, N., Mohanty, B., Montzka, C., Vanderborght, J., “Infiltration from the pedon to global grid scales: An overview and outlook for land surface modeling.” Vadose Zone Journal, 18(1), 2019.
44.Yang, S.-R.,and Chen, X.-R., “Assessing rainfall-induced wetting band depth for stability analysis of unsaturated soil slopes.”Case Studies in Construction Materials, Vol. 18, e02180, 2023.
45.Zhang, X.-Q., Li, M.-G., and Chen, J.-J., “Hydro-mechanical analysis of a braced foundation pit affected by rainfall and excavation in unsaturated soils.”Acta Geotechnica, 17(12), pp.5675-5690, 2022.
46.Zhou, F., Wu, H., Qiang, Y., Liu, G., Zhang, Z., Zhang, Y.,and Chen, N., “Investigating the coupling effects of rainfall intensity and slope inclination on soil-rock mixture slope stability and failure modes.”PLoS One, Vol. 20(2), e0314752, 2025.
47.中央氣象署,「震度新分級」,2019。
48.中央氣象署,「臺灣的災害性天氣」,2020。
49.中央氣象署,「地震測報中心」,2025。
50.中央氣象署,「臺灣強地動觀測網」,2025。
51.地質調查及礦業管理中心,「都會區及周緣坡地環境地質圖資料庫(91 ⁓ 99年)」,2010。
52.地質調查及礦業管理中心,「山崩災害潛勢」,2022。
53.地質調查及礦業管理中心,「地質圖資及影像資料」,2025。
54.吳俊傑, 王成華, 李廣信,「非飽和土基質吸力對邊坡穩定的影響」,岩土力學,第25卷第5期,頁732-736,2004。
55.高振誠,「台南市政府工務局110-112年度溪北山區市道地滑邊坡監測及預警系統建置服務工作-監測總成果報告」,青山工程顧問股份有限公司,2023。
56.國土測繪中心,「坡度分級」,2015。
57.張凱鈞,「考慮降雨入滲三維邊坡穩定分析之研究-以萬山D048大規模崩塌潛勢區為例」,國立成功大學資源工程學系碩士論文,2022。
58.黃獻廷, 葉信富, 柯建仲,「未飽和土壤單峰與雙峰水力特性對邊坡穩定性影響之研究」,農業工程學報,第67卷第3期,2021。
59.楊樹榮, 林忠志, 鄭錦桐, 潘國樑, 蔡如君, 李正利,「臺灣常用山崩分類系統」,第十四屆大地工程研討會,2011。
60.廖瑞堂, 陳昭維, 吳澤雄, 鄒鄭翰, 呂家豪, 高振誠, 陳御崇,「山坡地監測準則」,中華民國大地工程學會,2017。
61.台南市政府災害應變告示網,「歷史專案」,2025。
62.趙新杰,謝春慶,潘凱,李航,「強震作用下高填方邊坡變形與穩定性研究」,地球科學前沿,第11卷第3期,頁305-322,2021。
63.潘如蕙,「剪力強度折減法應用於層狀土壤邊坡之穩定性研究」,國立成功大學資源工程學系碩士論文,2007。
64.鍾明劍, 譚志豪, 陳勉銘, 蘇泰維,「以定率法評估邊坡山崩臨界雨量:以南勢坑為例」,中華水土保持學報,第44卷第1期,頁 66-77,2013。
校內:2030-08-15公開