| 研究生: |
趙宸得 Chao, Chen-De |
|---|---|
| 論文名稱: |
使用製程能力指標建構有限抽樣次數之重複抽樣計劃 Repetitive variable acceptance sampling plan with limited sampling times using capability index |
| 指導教授: |
胡政宏
Hu, Cheng-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 42 |
| 中文關鍵詞: | 重複抽樣計劃 、製程能力指標 、平均樣本數 |
| 外文關鍵詞: | Repetitive sampling plan, Process capability index, Average sample number |
| 相關次數: | 點閱:198 下載:25 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
允收抽樣為品管領域應用十分廣泛的一項工具,可藉此提供生產或消費者判斷貨批品質水準是否滿足自身需求。而我們可根據數據型態的不同分為「計數型抽樣計劃(Attribute sampling plan)」及「計量型抽樣計劃(Variable sampling plan)」兩大類。而前者為根據良品或不良品數等離散型資料對其建立允收標準,若驗收之貨批不符合標準則予以拒收,反之則給予允收。後者主要針對數據為連續型資料如長度、重量或是本研究採用的製程能力指標值,在以其計算臨界值作為允收標準後再對貨批抽樣進而作出判定與否的決策。
本研究之重點主要著重在欲改善重複群集抽樣可能會導致抽樣次數無窮多次的情況。傳統重複抽樣計劃的運作是在若抽樣出之樣本估計值在允收及拒收標準之間則對同一貨批進行重抽樣,直至能夠直接作出決策才停止。但此種狀況下,若供應商之製程能力較為中庸則有可能會進行太多次的重抽樣,其將會導致抽樣次數無限大,進而造成時間、人力等成本上的浪費。因此,本研究將會以最小化平均樣本數為目標,並設置一抽樣次數上限,若抽樣次數達到上限時將在當次抽樣直接作出決策,以避免上述情形的發生。而由於模式建構的複雜度,所以本次抽樣次數上限將先設置於兩次。
而在研究後段將參考Yen et al. (2013)研究中的案例進行抽樣計劃的建構,過程中使用傳統搜尋演算法求解,並於建構完成後進行績效的分析。於研究最後,再以相同的環境條件下參考Yen et al. (2013)及Pearn & Wu (2006)等研究建構一傳統重複抽樣計劃及單次抽樣計劃,並將各抽樣計劃進行相互比較。
而在最後的比較結果發現不論是否設置抽樣次數的上限,重複抽樣計劃在決策效率上明顯優於單次抽樣計劃。而兩種重複抽樣計劃則在不同的品質要求水平及抽樣風險下,決策效率則會有越來越接近的趨勢。
Improving the problem which taking too many sampling times during repetitive group sampling (RGS) is the key-point of this research. Traditional RGS is keeping re-sampling until we can decide directly. The possible problem is taking too many times for re-sampling, then it will waste too many costs like time or labor. In this paper, our goal is "minimizing average sample number (ASN)", and setting the limitation of sampling times, the decision will be made directly in the current sampling when the sampling times reach the upper limit. Due to the complexity of the math model, the upper limit of sampling times will set on two times in this paper.
However, we will refer to the case study about TFT-LCD of Yen et al. (2013) to construct the sampling plan, and find an optimal parameter set by searching method, also analyzing the efficiency after constructing the sampling plan. In last part of the research, we will compare three different sampling plans with the sample size and ASN and discuss which plan has better decision efficiency. Finally, we can find out the repetitive group sampling plan is always better than the single acceptance sampling plan no matter setting the limitation of sampling times, and the decision efficiency of two different repetitive sampling plan will get closer under the different quality levels and sampling risks.
Aslam, M., Wu, C. W., Azam, M., & Jun, C. H. (2013). Variable sampling inspection for resubmitted lots based on process capability index C-pk for normally distributed items. Applied Mathematical Modelling, 37(3), 667-675. doi:10.1016/j.apm.2012.02.048
Balamurali, S., & Jun, C. H. (2007). Multiple dependent state sampling plans for lot acceptance based on measurement data. European Journal of Operational Research, 180(3), 1221-1230.
Balamurali, S., Park, H., Jun, C. H., Kim, K. J., & Lee, J. (2005). Designing of variables repetitive group sampling plan involving minimum average sample number. Communications in Statistics-Simulation and Computation, 34(3), 799-809.
Boyles, R. A. (1991). The Taguchi capability index. Journal of quality technology, 23(1), 17-26.
Boyles, R. A. (1994). Brocess capability with asymmetric tolerances. Communications in Statistics-Simulation and Computation, 23(3), 615-635.
Chan, L. K., Cheng, S. W., & Spiring, F. A. (1988). A new measure of process capability: Cpm. Journal of quality technology, 20(3), 162-175.
Chan, L. K., Xiong, Z., & Zhang, D. (1990). On the asymptotic distributions of some process capability indices. Communications in Statistics-Theory and Methods, 19(1), 11-18.
Chen, S. M., & Hsu, N. F. (1995). The asymptotic distribution of the process capability index Cpmk. Communications in Statistics-Theory and Methods, 24(5), 1279-1291.
Chiang, J. Y., Zhu, J. P., Tsai, T. R., Lio, Y. L., & Jiang, N. (2017). An innovative sampling scheme for resubmitted lots by attributes. International Journal of Advanced Manufacturing Technology, 91(9-12), 4019-4031. doi:10.1007/s00170-017-0095-6
Chou, Y. M., & Owen, D. B. (1989). On the distributions of the estimated process capability indices. Communications in Statistics - Theory and Methods, 18(12), 4549-4560.
Dodge, H. F. (1955). Chain Sampling Inspection Plan. Industrial Quality Control, 11(4), 10-13.
Dodge, H. F., & Romig, H. G. (1929). A method of sampling inspection. The Bell System Technical Journal, 8(4), 613-631.
Hsiang, T. C., & Taguchi, G. (1985). A tutorial on quality control and assurance-the Taguchi methods. Paper presented at the ASA Annual Meeting LA, 1985.
Juran, J. M., Gryna, F. M., & Bingham, R. S. (1974). Quality control handbook: McGraw Hill.
Kane, V. E. (1986). Process capability indices. Journal of quality technology, 18(1), 41-52.
Kotz, S., & Johnson, N. L. (2002). Process capability indices—a review, 1992–2000. Journal of quality technology, 34(1), 2-19.
Lee, A. H., Wu, C. W., & Chen, Y. W. (2016). A modified variables repetitive group sampling plan with the consideration of preceding lots information. Annals of Operations Research, 238(1-2), 355-373.
Lieberman, G. J., & Resnikoff, G. J. (1955). Sampling plans for inspection by variables. Journal of the American Statistical Association, 50(270), 457-516. doi:10.2307/2280972
Liu, S. W., & Wu, C. W. (2014). Design and construction of a variables repetitive group sampling plan for unilateral specification limit. Communications in Statistics - Simulation and Computation, 43(8), 1866-1878.
Montgomery, D. C. (2012). Introduction to statistical quality control: John Wiley & Sons.
Pérez-González, C. J., Fernández, A. J., & Kohansal, A. (2020). Efficient truncated repetitive lot inspection using Poisson defect counts and prior information. European Journal of Operational Research.
Pérez-González, C. J., Fernández, A. J., Kohansal, A., & Asgharzadeh, A. (2019). Optimal truncated repetitive lot inspection with defect rates. Applied Mathematical Modelling, 75, 223-235.
Pearn, W. L., Kotz, S., & Johnson, N. L. (1992). Distributional and inferential properties of process capability indices. Journal of quality technology, 24(4), 216-231.
Pearn, W. L., Wu, C. H., & Chuang, C. C. (2014). Product Acceptance Determination for Processes with Multiple Independent Lines. Quality and Reliability Engineering International, 30(7), 1075-1082. doi:10.1002/qre.1535
Pearn, W. L., & Wu, C. W. (2006). Critical acceptance values and sample sizes of a variables sampling plan for very low fraction of defectives. Omega, 34(1), 90-101.
Seidel, W. (1997). Is sampling by variables worse than sampling by attributes? A decision theoretic analysis and a new mixed strategy for inspecting individual lots. Sankhyā: The Indian Journal of Statistics, Series B (1960-2002), 59(1), 96-107.
Sherman, R. E. (1965). Design and evaluation of a repetitive group sampling plan. Technometrics, 7(1), 11-21.
Wang, Z. H., & Wu, C. W. (2019). An improved sampling plan by variables inspection with consideration of process yield and quality loss. Journal of Statistical Computation and Simulation, 89(13), 2395-2409. doi:10.1080/00949655.2019.1619739
Wortham, A. W., & Baker, R. C. (1976). Multiple deferred state sampling inspection. International Journal of Production Research, 14(6), 719-731.
Wu, C. W. (2012). An efficient inspection scheme for variables based on Taguchi capability index. European Journal of Operational Research, 223(1), 116-122.
Wu, C. W., Wu, T. H., & Chen, T. (2015). Developing a variables repetitive group sampling scheme by considering process yield and quality loss. International Journal of Production Research, 53(7), 2239-2251. doi:10.1080/00207543.2014.986300
Yen, C. H., Chang, C. H., & Aslam, M. (2013). Repetitive variable acceptance sampling plan for one-sided specification. Journal of Statistical Computation and Simulation, 85(6), 1102-1116.