| 研究生: |
楊士賢 Yang, Shih-Hsien |
|---|---|
| 論文名稱: |
水中MTBE氧化特性之研究 Oxidation of MTBE in Aqueous Solution |
| 指導教授: |
林財富
Lin, Tsair-Fuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | Bubble Column模式 、全因素實驗設計法 、甲基第三丁基醚 、臭氧 、高錳酸鉀 |
| 外文關鍵詞: | Bubble Column model, Full factorial experimental design, Potassium permanganate, Methyl tert-butyl ether, Ozone |
| 相關次數: | 點閱:243 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
甲基第三丁基醚(Methyl Tert-Butyl Ether, MTBE)是全世界廣泛使用的汽油添加劑,其具有高度水溶解性、不易被土壤吸附及難以生物分解的特性。其洩露途徑為透過油庫或儲油槽的裂縫而滲漏至地表下,造成地下水水源污染,且MTBE已被証實為疑似致癌物質,因此極需有效的處理技術。本研究選取地下水處理及淨水處理程序常用的氧化劑—臭氧、高錳酸鉀及氯等來對MTBE進行氧化,進而了解各氧化劑去除MTBE之可行性,並探討水中MTBE之氧化特性。
在臭氧氧化MTBE部分,在較高pH值下(pH=8),氧化反應以氫氧自由基攻擊MTBE為主,遠較單獨以臭氧分子氧化時效率為高,以臭氧劑量為2.5mg/min、MTBE濃度為450μg/L時為例,僅反應5分鐘後去除率已可達到90%以上,相對而言,在低pH值下,氧化反應以臭氧分子直接氧MTBE為主,則幾乎無去除效果; 高錳酸鉀與MTBE反應部分,在反應180分鐘時,10mg/L的高錳酸鉀對濃度為670μg/L 的MTBE有26.7%的去除率。至於氯對MTBE的氧化效果則十分有限,以次氯酸鈉濃度為10mg/L為例,在反應180分鐘後,MTBE去除率僅有5.8%,因此加氯處理MTBE並不合適。
以全因素實驗設計法分別評估臭氧及高錳酸鉀氧化試驗,結果發現無論臭氧濃度及MTBE濃度的高低,只要pH值夠大的情況下,MTBE就會有明顯的去除率,因此pH值為最重要的操作因子。至於高錳酸鉀方面,高錳酸鉀劑量及MTBE濃度均對MTBE的去除率有正面的影響,而pH值的影響相對而言較小。
為了充分了解MTBE在受臭氧反應下的各個機制—揮發、氧化作用及質量傳送等,本研究也選擇Bubble Column模式結合臭氧與MTBE之反應動力,用以模擬MTBE在Bubble Column中與臭氧的反應行為。模擬所得的最佳化反應速率常數( )為0.157Lmg-1sec-1,可用以預測在不同MTBE初始濃度下之去除效果,且誤差在可接受範圍內。高錳酸鉀氧化MTBE方面,採取初始反應速率法,可求得高錳酸鉀與MTBE之反應速率式為 mg/L/min,其反應速率常數為2.57×10-4 Lmg-1min-1。
Methyl tert-butyl ether (MTBE) has been added into fuel extensively as an oxygenate. Due to high water solubility, low Henry’s law constant and low partition coefficient, MTBE is not easy to be removed from contaminated groundwater. To evaluate the effectiveness of chemical oxidation on the destruction of MTBE, three oxidants, including ozone, potassium permanganate, and chlorine were studied for their destruction kinetics on MTBE.
For ozone reaction with MTBE at higher pH (pH 8), hydroxyl radical is the dominant oxidant due to its high reactivity and unselectivity. The reaction rate is much faster than that for ozone molecules under lower pH. For instance, MTBE degradation was around 90% after 5 minutes of reaction at ozone concentration = 2.5mg/min and MTBE concentration = 450μg/L. On the contrary, as ozone is the dominant oxidant at lower pH, no significant degradation of MTBE was observed. For the reaction of potassium permanganate with MTBE (MTBE concentration = 670μg/L and potassium permanganate concentration of 10mg/L), about 26.7% of MTBE was degraded after 180 minutes. For chlorine oxidation, only up to 6% reduction of MTBE concentration are found, suggesting that chlorine is not appropriate for oxidizing MTBE.
A full factorial experimental design was employed to evaluate the effect of oxidant dosage, MTBE concentration, and pH on the oxidation of MTBE by ozone and potassium permanganate. We found that regardless of MTBE and ozone concentration, the MTBE destruction is significant when pH is high enough. The may suggest that pH is the most important operational factor. For potassium permanganate oxidation, the destruction of MTBE is more substantial at higher oxidant concentration, while pH does not have strong effect on MTBE destruction.
In order to realize the mechanisms of MTBE removal during ozonation process, bubble column experiments are conducted. The experimental data are simulated using a bubble column model that considers three mechanisms, including vaporization, oxidation kinetics and mass transfer. The model fitted to the experimental fairly well, and the reaction rate constant ( ) is 0.157 Lmg-1sec-1. The extracted rate constant is then used to predict another set of experimental data. The model predictions capture the trend of the experimental data, suggesting that the model is reasonable. For potassium permanganate oxidation experiment, an initial rate method is used to determine the reaction rate of potassium permanganate and MTBE oxidation. The observed reaction rate is (mg/L/min).
Achten, C., and Puttmann,W., “Determination of Methyl Tertiary-Butyl Ether in Surface Water by Use of Solid-Phase Mircroextration”, Environ. Sci. Technol.,34, 1359-1364, 2000.
APHA, AWWA and WPCF. Standard Methods for the Examination of Wastewater, 19th ed., Washington, DC, USA, 1995.
APHA, AWWA and WPCF. Standard Methods for the Examination of Wastewater, 19th ed., Washington, DC, USA, 1996.
Bailey, P. S., “Ozonation in Organic Chemistry”, Academic Press, New York, 8, 1990.
Budavari, S. et al., “ 7643 : Patassium Permanganate”, The Merck Index, 11th edition, Merck and Co., INC., 7636, 1989.
Barker, R. and Jones, A. R., “Treatment of malodorants in air by the UV/ozone technique”, Ozone Sci and Eng., 10, 4, 405, 1988.
California Department of Health Services. Drinking Water Standards for Methyl Tertiary-Butyl Ether(MTBE), Sacramento, CA, 1999.
Cho,J.S.,Wakao,N.,”Determination of liquid-side and gas-side volumetric mass transfer coefficients in a bubble column”, Department of Chemical Engineering,Yokohama National University,Yokohama 240,1988.
Clayton,W., Marvin, B.K., Pac, T., and Mott-Smith, E. “A multisite field performance evaluation of in-situ chemical oxidation using permanganate. In: Wickramanayake GB, Gavaskar AR, Chen SC, editors. Chemical oxidation and reactive barriers: remediation of chlorinated and recalcitrant compounds. Second International Conference of Chlorinated and Recalcitrant Compounds. Monterey”, CA: Battelle Press, 101-8, 2000.
Damm,J.H.,Hardacre,C.,Kalin,R.M.,and Walsh,K.P.,” Kinetics of the oxidation of methyl tert-butyl ether (MTBE) by potassium permanganate”, Water Res., 36, 3638-3646, 2002.
Davidson, J.M. and Creek, D.N., “Using the gasoline additive MTBE in forensic environmental investigations”, Environmental Forensics, 1 , 31-36, 2000.
EPA, Environmental Protection Agency, “ MTBE fact sheet#1, overview ”, EPA 510-F97-014, 1998. (http: // www.epa.gov / OUST / mtbe /mtbefs1.pdf)
EPA, Environmental Protection Agency, ” MTBE fact sheet#2,Remediation of MTBE contaminated soil and groundwater ”, EPA 510-F97-015, 1998. (http://www.epa.gov/OUST/mtbe/mtbefs2.pdf)
EPA, Environmental Protection Agency, ”MTBE fact sheet#3,Use and
distribution of MTBE and ethanol “, EPA 510-F97-016, 1998.
(http://www.epa.gov/OUST/mtbe/mtbefs3.pdf)
Feng, J. and Johnson, D. C. “Electrocatalysis of anodic oxygen-transfer reactions: evolution of ozone”, Electrochem. Soc., 141, 2708, 1994.
Ficek, K. J., “Chap.21:Potassium Permanagnate for Iron and Manganese Removal and Taste and Odor Control”, Water Treatment Plant Design, R. L Sanks.(editor), Ann Arbor Science Publishers, Inc., 461-479, 1980.
Ficek, K. J. and Reidies, A. H., “Chap. 8 : Patassium Permanganate”, In Disinfection Alternatives for Safe Drinking Water, Bryrant, E. A., Fulton, G. P. and Budd, G. C.(editor), New York : Van Nostrand Rcinhold, 259-276, 1992.
Huang, T.C. and Chen, D.H., “Kinetics of ozone decomposition in aqueous solution with and without ultraviolet radiation.” J. Chin. I. Ch. E. , 24, 4, 207, 1993.
Hoigne, J. and Bader, H., “Rate constants of reactions of ozone with organic and inorganic compounds in water -I. Non-dissociating organic compounds” , Water Res., 17, 173, 1983.
Hoigine, J. and Bader, H., “Rate constant of reaction of ozone with organic and inorganic compounds in water”, Water Res., 17, 1996.
Hoigne, J. and Bader, H., Hagg, W. R. and Staehelin, J., “Rate constants of reactions of ozone with organic and inorganic compounds in water -Ⅲ. Inorganic compounds and radicals”, Water Res., 19, 993, 1985.
Johnson, R., Pankow, J., Bender, D., Price, C., and Zogorski, J., “Feature-MTBE To What Extent Will Paste Release Contaminated Community Water Supply Wells” , Environ. Sci. Technol., 34, 210-217, 2000.
Julien, D., Rosa, G. and Esmeralda , M.,“Optimization of Headspace Solid-phase Microextraction by Means of an Experimental Design for the Determination of Methyl tert-buryl ether in Water by Gas Chromatography-flame Ionization Detection”, Journal of Chromatography A, 963, 259-264, 2002 .
Knocke, W. R., Shorney, H. L. and Bellamy,J. D. “Examining the Reactions Between Soluble Iron, DOC and Alternative Oxidant During Conventional Treatment”, Jour. AWWA, 86, 117-127, 1994.
Knocke, W. R., Hoehn, R.C. and Sinsabaugh, R. L., “Using Alternative Oxidants to Remove Dissolved Manganese From Waters Laden with Organics”, Jour. AWWA, 79, 75-79, 1987.
Ladbury, J. W. and Cullis, C. F., “Kinetics and Mechanism of Oxidation by Permanganate”, CHEM. Reviews, 58, 403-438, 1958.
Langlias, B., Reckhow, D.A. and Brink, D.R., Ozone in Water Treatment Application and Engineering, Lewis publishers, Inc., Michigan, U.S.A., 1991.
Lapin, L. L., “Modern Engineering Statistics”, Duxbury Press, 1997.
Marie, M. M., Arturo A. K.,Clifford, A. B.,Robert, G. R. and Orville C. S., “Kinetics and Products of Reactions of MTBE with Ozone and Ozone/Hydrogen Peroxide in Water”, Joural of Hazardous Materials, B89, 197-212, 2002.
McCarty, J. J. and Smith, C. H., “A Review of Ozone ang it’s Application of Domestic Wastewater Treatment”, Jour. AWWA, 66, 12, 718-726, 1974.
McKay, D.J., Stark, J.A., Young, B.L., Govoni, J.W., Berini, C.M.,Cronan, T.J. and Hewitt, A.D., “A field demonstration of trichloroethylene oxidation using potassium permanganate”, In: Wickramanayake GB, Gavaskar AR, Chen SC,editors. Chemical oxidation and reactive barriers: remediation of chlorinated and recalcitrant compounds, Second International Conference of Chlorinated and Recalcitrant Compounds, Monterey, CA: Battelle Press, 101-8, 2000.
Oberle, D.W. and Schroder , D.L., “ Design considerations for insitu chemical oxidation. In: Wickramanayake GB, Gavaskar AR, Chen SC, editors. Chemical oxidation and reactive barriers: remediation of chlorinated and recalcitrant compounds. Second International Conference of Chlorinated and Recalcitrant Compounds”, Monterey, CA: Battelle Press, 91-9, 2000
Prengle, H. W. and Mauk C.E.,“New technology ozone/UV chemical oxidation wastewater process for metal complex, organic species and disinfection,” AIChE Sym., 74, 228, 1978.
Posselt, H. S. and Anderson, F. J., “Effect of Permanganate pretreatment and Coagulation with Dual Coagulants on Algae Removal in Direct Filtration”, J. Water SRT-Aqua, 45, 5, 316-326, 1996.
Siegrist, R.L., Principles and Practices of In Situ Chemical Oxidation Using Permanganate, 177-181, Joural of Hazardous Materials, 90, 323-324, 2002
Skoog, D. A., Wesr, D. M. and Holler, F. J., “Chap. 17 : Applications of Oxidation/Reduction Titration”, Analytical Chemistry : An Introduction, 5th edition, Yi Hsien Publishing Co., Ltd., 1990.
Sotelo, J. L. and Beltran, F. J., “Henry’s law constant for the ozone-water system”, Water Res., 23, 1989.
Staehelin, J. and Hoigne, J., ”The decomposiition of ozone in water in the presence of organic solutes acting as promoters and inhibitord of radical chain reactions”, Environ. Sci. Technol., 19, 1206, 1985.
Stumm, W. and Morgan, J. J., “Chap 8 : Oxidation and Reduction ; Equilibria and icrobial Mediation”, Aquatic Chemistry, 3th edition, John Wiley and Sons Inc., 462, 1996.
Rip, V. G. and Netzer, A., “Handbook of Ozone Technology and Application”, Wat. Sci. Tech, I, 1982.
U.S. EPA. Drinking Water Advisory, “Consumer Accptabiliably Advice and Health Effects Analysis on Methyl Tertiary-Butyl Ether(MTBE)”, EPA-822-F-97-009, Office of Water: Washington, DC, 1997.
Vella, P.A., Munder, J.A., “ Toxic pollutant destruction”, In: Emerging technologies in hazardous waste management III, Atlanta, American Chemical Society, 85-105, 1993.
Yan, Y.E., Schwartz, F.W., “ Oxidative degradation and kinetics of chlorinated ethylenes by potassium permanganate. Journal of Contaminant Hydrology, 37, 3, 43-65, 1999.
方瑋寧,“MTBE好氧分解之可行性研究”,國立中山大學環境工程研究所碩士論文,2002。
行政院環境保護署新聞資料,http://www.epa.gov.tw/news en-900124.htm,2001。
行政院環境保護署,飲用水與甲基第三丁基醚相關資料,http://www.epa.gov.tw/waterpollution/drinkwater/mains/m10.htm,2001。
行政院環境保護署相關資料,汽油添加劑MTBE(甲基第三丁基醚)之環境污染特性,http://www.epa.gov.tw/training/49-4-2.htm,2001。
林哲民,“利用UV/H2O2、O3 及UV/O3光化學氧化法處理反應性染料廢水之研究”,逢甲大學環境工程與科學研究所碩士論文,2001。
林財富、洪旭文,“受污染場現地化學處理方法介紹” ,工業污染防制期刊,第72期,178-200,1999。
林財富、洪旭文, “以吸附劑作為透水性反應牆材料處理地下水中MTBE之研究”,行政院國家科學委員會計畫,2002。
林財富,”污染場址整治”, 國立成功大學環境工程研究所上課講義,2002。
林財富,”地下污染物傳輸與宿命”,國立成功大學環境工程研究所上課講義,2003。
高肇藩,”給水工程”,國立成功大學環境工程系上課用書,1987。
陳郁仁,“前氧化劑對藻類去除影響之研究”,國立成功大學環境工程研究所碩士論文,2001。
溫添進,”統計與實驗設計” ,國立成功大學化學工程研究所上課講義,2002。
黃世峰,“以臭氧/紫外光去除印刷電路板電鍍液中亞甲基二奈磺酸鈉之研究”,國立台灣大學環境工程學研究所碩士論文,2001。
歐陽嶠輝,”下水道工程學”,長松文化公司,2000。
“環保署將加強抽查加油站防範地下儲油槽洩漏”, http://www.epa.gov.tw/news/gn861103.htm,1997。
殷榮堅、顧洋,“以紫外線/臭氧程序處理二氯酚溶液反應行為之研究”,
國立台灣工業技術學院化學工程研究所碩士論文,1993。
劉家玲,”預氯程序對粉狀活性碳吸附2-MIB 之影響”,國立成功大學環境工程研究所碩士論文,2002