簡易檢索 / 詳目顯示

研究生: 吳守弘
Wu, Shou-Hung
論文名稱: 具有不同吸收層結構的氮化銦鎵垂直式太陽能電池之特性研究
Characterization of InGaN-based Vertical Solar Cells with Different Absorption Structures
指導教授: 許進恭
Sheu, Jinn-Kong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 70
中文關鍵詞: 氮化銦鎵太陽能電池垂直式緩衝層
外文關鍵詞: InGaN, Solar Cell, Vertical, Barrier
相關次數: 點閱:49下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討元件的吸收波長、MQW的barrier厚度與摻雜濃度對
    垂直式太陽能電池特性的影響,並觀察以Si基板替換藍寶石基板在高倍
    率太陽光照射下,能否改善轉換效率下降的問題,最後透過額外附加一
    層紫外光吸收層,嘗試增加元件對太陽光的使用效率。
    (1)變吸收波長試片:經過模擬光源量測,吸收波段越長可產生光電流越
    多,雖然因為能隙較小進而使得開路電壓下降,轉換效率仍以吸收波段
    較長者為佳。垂直式結構以Si基板替換藍寶石基板在300倍太陽光照射下,
    足以抵抗熱效應進而提升元件表現。
    (2)變barrier層厚度、摻雜濃度試片:在不影響磊晶品質情況下,barrier
    層厚度越薄越好;摻雜濃度則需適中,摻雜濃度過低使得barrier層導電
    特性不佳,過多則讓磊晶品質下降,都會降低轉換效率。
    (3)附加紫外光吸收層試片:經由EQE量測發現,附加層並沒有增加紫外光
    使用效率,推測是因為附加層與量測電極中間之,使得附加層轉換出的
    電子電洞無法輸出。

    In this thesis, vertical InGaN-based solar cells were fabricated by wafer bonding technique, and the thermally resistive sapphire substrates were replaced by the Si substrate with high thermal conductivity . We modulated the In composition of vertical InGaN-based solar cells, altered the thickness and Si doping level of quantum barrier (QB) in vertical InGaN-based solar cells multiple quantum well (MQW), and we made an additional ultraviolet ligh MQW above the device structures. We, then, investigated the optical and electrical characteristics for these cells, trying to find out the better way for the cells. For the modulation of In composition of vertical InGaN-based solar cells. The typical peak wavelength of the electroluminescence spectra taken from the InGaN/GaN/Si solar cells was approximately 400nm, 455nm, and 525 nm. The wavelength of 525nm cells had better performance because of additional light absorption. On the other side, the vertical solar cells did not show degradation in power conversion efficiency (PCE) even when the solar concentrations were increased to 300 suns. Comparing to low Si doping level(~3×1017 cm-3), high doping level(~3×1018 cm-3) led to poor material quality, the shunt resistance (Rsh) decreased, and the undoped (~1×1016 cm-3)barrier lead to high series resistance (Rs). Besides, under the premise that all cells had same doping level, the reduction in barrier thickness resulted in the increase of the PCE. This condition can be attributed to the thinner barrier thickness decreasing the Rs and increasing the short circuit current. The cells with additional ultraviolet ligh MQW above the device structures did not showing improvement in power conversion efficiency, because the n+-GaN layer and strain release layer thickness were too high. Even though there still remained weak ultraviolet ligh absorbed by active layer, the carriers would recombine with the defect

    目錄 摘要 ............................................................................................................... I 英文摘要 . ..................................................................................................... II 目錄 ........................................................................................................... XIV 表目錄 ..................................................................................................... XVII 圖目錄 .................................................................................................... XVIII 第一章 序論 .................................................................................................. 1 1.1 前言............................................................................................................1 1.2 氮化銦鎵太陽能電池簡介........................................................................1 1.3 垂直式結構太陽能電池............................................................................2 1.4 研究動機....................................................................................................3 第二章 基礎理論介紹與量測儀器................................................................ 5 2.1 太陽能電池簡介........................................................................................5 2.2 太陽能電池等效電路模型........................................................................5 2.3 太陽能電池元件相關參數分析................................................................6 2.3-1 開路電壓(Open-circuit Voltage, VOC)....................................................7 2.3-2 短路電流(Short Current, ISC)..................................................................7 2.3-3 最大輸出功率(Maximum Output Power, PMAX)、最大輸出 電壓(VMAX)、最大輸出電流(IMAX)…………………………………………...8 2.3-4 填充因子(Fill Factor, FF).......................................................................8 2.3-5 光電轉換效率(Energy Conversion Efficiency, η).................................9 2.3-6 頻譜響應(Spectral Responsivity, SR(λ))................................................9 2.3-7外部量子效率(External Quantum Efficiency, EQE)...............................9 2.4 空氣質量(Air Mass)與輻射照度(irradiance)..........................................10 2.5 量測儀器..................................................................................................11 2.5-1 聚光型太陽能模擬器...........................................................................11 2.5-2 電激發光譜量測系統...........................................................................11 2.5-3 外部量子效率量測系統.......................................................................11 第三章 元件結構...........................................................................................14 3.1 變吸收波長&厚度、摻雜太陽能電池...................................................14 3.2 增加紫外光吸收層垂直式太陽能電池..................................................17 第四章 量測結果與討論 .............................................................................23 4.1 變吸收波長垂直式太陽能電池分析......................................................23 4.1-1 AM1.5G 標準量測條件........................................................................23 4.1-2 外部量子效率(EQE)量測分析............................................................24 4.1-3 電致激發光譜量測(EL).......................................................................24 4.1-4 高聚光AM1.5D量測分析....................................................................24 4.1-5 結果與討論..........................................................................................26 4.2 變barrier厚度與Si摻雜垂直式太陽能電池分析....................................26 4.2-1 維持180A厚度變Si摻雜試片..............................................................26 4.2-2 低Si摻雜(3×1017cm-3)變厚度試片.......................................................28 4.2-3 未摻雜(1×1016cm-3)變厚度試片..........................................................28 4.2-4 結果與討論...........................................................................................29 4.3 增加紫外光吸收層垂直式太陽能電池分析..........................................30 4.3-1 外部量子效率(EQE)量測分析............................................................30 4.3-2 AM1.5G標準量測條件........................................................................ 30 4.3-3 高聚光AM1.5G 量測分析..................................................................31 4.3-4 結果與討論...........................................................................................31 第五章 結論與未來展望 .............................................................................66 參考文獻…………………………………………………………………….68

    參考文獻
    [1] Fritts C, “New Form of Selenium Cell, with some Remarkable Electrical Discoveries made by its Usef”, Proc. Am. Assoc. Adv. Sci. Vol.33, pp.97 (1883). [2] D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power”, J. Appl. Phys. Vol.25, pp.676-677 (1954). [3] M. B. Prince, “Silicon Solar Energy Converters”, J. Appl. Phys. Vol.26, pp. 534-540 (1955). [4] Joseph J. Loferski, “Theoretical Considerations Governing the Choice of the Optimum Semiconductor for Photovoltaic Solar Energy Conversion”, J. Appl. Phys. Vol.27, pp. 777-784 (1956). [5] Joseph J. Wysocki and Paul Rappaport, “Effect of Temperature on Photovoltaic Solar Energy Conversion”, J. Appl. Phys. Vol.31, pp.571-578 (1960). [6] William Shockley and Hans J. Queisser, “Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells”, J. Appl. Phys. Vol.32, pp.510– 519 (1961). [7] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN”, Appl. Phys Lett. Vol.80, pp.3967-3969 (2002) [8] M. Asif Khan, J. N. Kuznia, D. T. Olson, J. M. Van hove, M. Blasingame,and L. F. Reitz, “High-responsivity photoconductive ultraviolet sensors based on insulating single-crystal GaN epilayers”, Appl. Phys. Lett. Vol. 60, pp. 2917, (1992). [9] W.S. Wong, T. Sands, N.W. Cheung, M.Kneissl, D.P. Bour, P. Mei, L. T. Romano, and N. M. Johnson, “InxGa1-xN light emitting diodes on Si substrates fabricated by Pd–In metal bonding and laser lift-off,” Appl. Phys. Lett., Vol. 77, pp. 2822-2824, 2000.
    [10] W. Y. Lin,D. S. Wuu , K. F. Pan , S. H. Huang , C. E. Lee , W. K. Wang , S. C. Hsu , Y. Y. Su , S. Y. Huang , R. H. Horng, “High-power GaN-mirror-Cu light-emitting diodes for vertical current injection using laser liftoff and electroplating techniques,” IEEE Photon. Technol. Lett., Vol.17,pp. 1809-1811, 2005.
    [11] U. Gösele and Q.-Y. Tong, Semiconductor Wafer Bonding : science and technology, John Wiley & Sons, Inc., 1998. [12] Z.F. Fan, S. N. Mohammad, W. Kim, Ö. Aktas, A. E. Botchkarev, and H. Morkoç, “very low resistance multilayer ohmic contact to n-GaN,” Appl. Phys. Lett., Vol. 68, pp. 1672-1674, 1996. [13] D. F. Wang, F. Shiwei, C. Lu, A. Motayed, M. Jah, S. N. Mohammad, K. A. Jones and L. Salamanca-Riba“Low-resistance Ti/Al/Ti/Au multilayer ohmic contact to n-GaN,” J. Appl. Phys., Vol. 89, pp. 6214-6217, 2001. [14] C. Z. Lu, H. N. Chen, X. L. Lv, X. S. Xie and S. N. Mohammad, “Temperature and doping-dependent resistivity of Ti/Au/Pd/Au multilayer ohmic contact to n-GaN,” J. Appl. Phys., Vol. 91, pp. 9218-9224, 2002.
    [15] 黃惠良, 曾百亨, “太陽電池,” 五南圖書出版, 2008.
    [16] A. Luque, and S. Hegedus, “Handbook of Photovoltaic Science and Engineering,” Wiley England, 2002.
    [17] 紀國鐘, 蘇炎坤, “光電半導體技術手冊,” 台萬電子材料與元件協
    會出版, 2002.
    [18] J. Nelson, “The Physics of Solar Cell,” Imperial College Press, Lodon, 2003. [19] C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett., Vol. 93, pp. 143502-143502, 2008.
    [20] M. A. Green, “Solar cells: operating principles, technology, and system applications,” 1982. [21] C. C. Yang, J. K. Sheu, Xin-Wei Liang, Min-Shun Huang, M. L. Lee, K. H. Chang, S. J. Tu, Feng-Wen Huang and W. C. Lai, “Enhancement of the conversion efficiency of GaN-based photovoltaic devices with AlGaN/InGaN absorption layers,” Appl. Phys. Lett., Vol. 97, pp. 021113(1)-021113(3), 2010. [22] C. C. Yang, C. H. Jang, J. K. Sheu, M. L. Lee, S. J. Tu, F. W. Huang, Y. H. Yeh, and W. C. Lai, “Characteristics of InGaN-based concentrator solar cells operating under 150X solar concentration,” Optics Express, Vol. 19, Issue S4, pp. A695-A700, 2011.

    無法下載圖示 校內:2021-07-22公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE