| 研究生: |
王尚仁 Wang, Shang-Ren |
|---|---|
| 論文名稱: |
藉由自組裝單分子膜進行二氧化鈦奈米管的表面改質之研究 The surface functionalities of self-assembled monolayers on titania nanotube arrays |
| 指導教授: |
李澤民
Lee, Tzer-Min |
| 共同指導教授: |
林睿哲
Lin, Jui-Che |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 口腔醫學研究所 Institute of Oral Medicine |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 陽極氧化 、二氧化鈦奈米管 、自組裝單分子膜 |
| 外文關鍵詞: | Anodization, TiO2 nanotube, self-assembled monolayer |
| 相關次數: | 點閱:110 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈦金屬具有良好的機械性質與生物相容性,廣泛應用於外科植體並與骨頭親密結合。透過表面改質的方式改變表面結構、表面化學性質與表面能以改變對細胞影響,藉此來改善鈦本身生物惰性而無法提高骨整合效率的缺點。多數學者分別探討陽極氧化法製備二氧化鈦奈米管與藉由末端官能基改變材料表面化性對細胞影響。但少數學者同時探討表面形貌改變結合不同表面化性與細胞間的相互關係。本實驗以二氧化鈦奈米管,利用電漿處理改善表面活性,來增加與自組裝單層膜的改質能力,透過不同功能性末端官能基的影響與有序列的二氧化鈦奈米管陣列的結合來了解其對類骨母細胞MG63之行為。
關於二氧化鈦奈米管的生成,是藉由陽極氧化的方式並選用含氟離子的電解液達到控制鈦或鈦合金生成有秩序自組裝的二氧化鈦奈米管,並且藉由浸泡的方式做為自組裝單分子膜的改質。之後將利用SEM來觀察基材的表面形態,並透過ESCA分析表面元素與鍵結情況來判定分子膜的接枝狀況,其中,可利用簡單的接觸角量測,了解材基材表面概略性評估。之後進行細胞實驗,觀察細胞在同時受奈米管與表面官能基之影響會有怎樣的行為表現,並以細胞型態、細胞貼附、增長、鹼性磷酸酶(ALP)活性觀察之。
接觸角測試與化學成分分析確認自組裝單分子膜有效改質二氧化鈦奈米管,不同官能基造成烷基>胺基>羧基之親疏水性變化以及元素磷與元素氮含量變化確認化性接枝。細胞實驗中,除了同時進行陽極氧化同時改質的表面化性的表面比僅進行陽極氧化處理的表面有更好的細胞表現,重要的是發現即使在相同的末端官能基表面,因結合不同的表面結構,細胞表現也不盡相同。
Owing to high mechanical strength and biocompatibility, titanium and its alloys are widespread used in bone and dental implant. However, titanium lacks in rapid osseointegration. It is well-know that modification of topography, chemistry, and surface energies could lead to strong impact on different cellular responses of titanium. The TiO2 nanotube arrays by electrochemical anodization has proven to change cellular recognition conformation. The chemical properties of the outer surface by changing the group attached to the tail, the surface functionalization is performed using self-assembled monolayer (SAM).
The aim of this study is integrating effects of self-assembled monolayer (SAM) modified TiO2 nanotubes on the human osteoblastic like MG63 cells response by simultaneous modulated the ordered nano-architecture and the different functional tail groups.
The formation of TiO2 nanotube was prepared by anodization method in a fluoride-containing electrolyte, and SAM surface covered with terminal methyl (SAM-CH3), amino group (SAM-NH2), or carboxyl (SAM-COOH) on a disk was prepared by simple immersion a TiO2 nanotube disk into methanol solution of corresponding commercially available alkanephosphonic acid derivatives for 24 h at room temperature. Characterization of the morphology, chemical composition, and interfacial properties of functionalized TiO2 nanotube surface was performed by scanning electron microscopy (SEM), Electron Spectroscopy for Chemical Analysis (ESCA), and contact angle (CA) measurements, respectively. Cells are cultured on specimens in vitro, and the morphology, cell adhesion, proliferation and alkaline phosphatase assay were evaluated as the index of biocompatibility.
The SAM combining the nanotube surface of was preliminary checked by contact angle of specimens with various functional groups. The result of ESCA assay could identify the success of the SAMs grafting on the nanotube surface. In vitro test, cell attachment, cell proliferation and differentiation of TiO2 nanotubes could be changed by different SAM grafting.
[1]. Schwartz Z. and Boyan B.D., Underlaying mechanisms at the bone biomaterial interface. Journal of Cellular Biochemistry, 1994. 56: p. 340-347.
[2]. Arima Y, Iwata H., Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials, 2007. 28: p. 3074-3082.
[3]. Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, et al. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater, 2007. 6: p. 997–1003.
[4]. Lee MH, Oh N, Lee SW, Leesungbok R, Kim SE, Yun YP, et al., Factors influencing osteoblast maturation on microgrooved titanium substrata. Biomaterials, 2010. 31: p. 3804-3815.
[5]. Huang NF, Lee RJ, Li S., Engineering of aligned skeletal muscle by micropatterning. Am J Transl Res., 2010. 2: p. 43-55.
[6]. Kapoor A, Caporali EHG, Kenis PJA, Stewart MC., Microtopographically patterned surfaces promote the alignment of tenocytes and extracellular collagen. Acta Biomater, 2010. 6: p. 2580-2589.
[7]. Yucel D, Kose GT, Hasirci V, Tissue Engineered, Guided Nerve Tube Consisting of Aligned Neural Stem Cells and Astrocytes. Biomacromolecules, 2010. 11: p. 3584-3591.
[8]. Lecuit T, Lenne PF, Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nat Rev Mol Cell Bio, 2007. 8: p. 633-644.
[9]. Yap FL, Zhang Y., Protein and cell micropatterning and its integration with micro/nanoparticles assembly. Biosens Bioelectron, 2007. 22: p. 775-788.
[10]. Reymann AC, Martiel JL, Cambier T, Blanchoin L, Boujemaa-Paterski R, Théry M., Nucleation geometry governs ordered actin networks structures. Nature Material, 2010. 9: p. 827-832.
[11]. FAGHIHI S, AZARI F, ZHILYAEV AP, SZPUNAR JA, VALI H, TABRIZIAN M., Cellular and molecular interactions between MC3T3-E1 pre-osteoblasts and nanostructured titanium produced by high-pressure torsion. Biomaterials, 2007. 28: p. 3887 - 3895.
[12]. Feinberg AW, Parker KK., Surface nanoscale patterning of bioactive glass to support cellular growth and differentiation. Nano Lett, 2010 10: p. 2184-2191.
[13]. Chown MG, Kumar S., Imaging and manipulating the structural machinery of living cells on the micro- and nanoscale. Int J Nanomed, 2007. 2: p. 333-344.
[14]. Lei B, Chen XF, Wang YJ, Zhao NR, Du C, Fang LM., Surface nanoscale patterning of bioactive glass to support cellular growth and differentiation. J Biomed Mater Res A, 2010. 94A: p. 1091-1099.
[15]. Stevens MM, George JH., Exploring and Engineering the Cell Surface Interface. Science, 2005. 310: p.1135-1138.
[16]. Boudreau J, Jones PL., Extracellular matrix and integrin signalling : the shape of things to come. Biochem J, 1999. 339: p. 481-488.
[17]. Linder L, Carlsson A, Marsal L, Bjursten LM, Branmartk PI., Clinical aspects of osseointegration in joint replacement. J Bone Joint Surg, 1988. 70: p. 550 –555.
[18]. Satomi K, Alagawa Y, Nikai H, Tsuru H., Bone-implant interface structures after nontapping and tapping insertion of screw-type titanium alloy endosseous implants. J Prosthet Dent, 1988. 59: p. 339–342.
[19]. Pillar RM, Lee JM, Maniatopoulos C., Observation on the effect of movement on bone ingrowth into porous-surfaced implants. Clin Orthop Rel Res., 1986. 208: p. 108 –113.
[20]. Satsangi A, Satsangi N, Glover R, Satsangi RK, Ong JL., Osteoblast response to phospholipid modified titanium surface. Biomaterials, 2003. 24: p. 4585– 4589.
[21]. F. Keller, M. S. Hunter, D. L. Robinson., Structural feature of anodic films on aluminum. J. Electrochem. Soc., 1953. 100(9): p.411.
[22]. J. P. O’Sullivan, G. C. Wood., The morphology and mechanism of formation of porous anodic films on aluminium. Proc. R. Soc., 1970. A31(7): p. 511.
[23]. D. Gong, C. A. Grimes, O. K. Varghese, W. C. Hu, R. S. Singh, Z. Chen, E. C. Dickey, Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res., 2001. 16: p. 3331.
[24]. Kim KH, Ramaswamy N., Electrochemical surface modification of titanium in dentistry. Dent Mater J., 2009. 28: p. 20-36.
[25]. Park J, Bauer S, von der Mark K, Schmuki P., Nanosize and Vitality: TiO2 Nanotube Diameter Directs Cell Fate. Nano Lett., 2007. 7: p. 1686-1691.
[26]. Oh S, Brammer KS, Li YSJ, Teng D, Engler AJ, Chien S, et al., Stem cell fate dictated solely by altered nanotube dimension. P Natl Acad Sci., 2009. 106: p. 2130-2135.
[27]. Yu WQ, Zhang YL, Jiang XQ, Zhang FQ., In vitro behavior of MC3T3-E1 preosteoblast with different annealing temperature titania nanotubes. Oral Dis., 2010. 16: p. 624-630.
[28]. Popat, K. C., Leoni, L., Grimes, C. A., Desai, T. A., Influence of Engineered Titania Nanotubular Surfaces on Bone Cells. Biomaterials, 2007. 28: p. 3188-3197.
[29]. Brammer KS, Oh S, Gallagher JO, Jin S., Enhanced cellular mobility guided by TiO2 nanotube surfaces. Nano Lett., 2008. 8(3): p. 786-793.
[30]. J. Park, S. Bauer, K. von der Mark, P. Schmuki, Nanosize and Vitality: TiO2 Nanotube Diameter Directs Cell Fate. Nano Lett., 2007. 7: p. 1686–1691.
[31]. Park J., Bauer, S., Schlegel, K. A., Neukam F. W., Mark, K. V., Schmuki P., TiO2 Nanotube Surfaces: 15 nm—An Optimal Length Scale of Surface Topography for Cell Adhesion and Differentiation. P. Small, 2009. 5: p. 666.
[32]. Peng, L., Eltgroth, M. L., LaTempa, T. J., Grimes, C. A.; Desai, T., The effect of TiO2 nanotubes on endothelial function and smooth muscle proliferation. A. Biomaterials, 2009, 30 (7): p. 1268–1272.
[33]. Oh, S., Daraio, C., Chen, L. H., Pisanic, T. R., Finones, R. R., Jin, S., Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. J. Biomed. Mater. Res. A , 2006. 78 (1): p. 97–103.
[34]. Sollazzo, V., Pezzetti, F., Scarano, A., Piattelli, A., Massari, L., Brunelli, G., Carinci, F., Anatase Coating Improves Implant Osseointegration In Vivo. J. Craniofac. Surg., 2007. 18 (4): p. 806–810.
[35]. Li, L. H., Kong, Y. M., Kim, H. W., Kim, Y. W., Kim, H. E., Heo, S. J., Koak, J., Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Y. Biomaterials, 2004. 25 (14): p. 2867–2875.
[36]. Yu WQ, Jiang XQ, Zhang FQ, Xu L., The effect of anatase TiO2 nanotube layers on MC3T3-E1 preosteoblast adhesion, proliferation, and differentiation. J Biomed Mater Res A., 2010. 94A: p. 1012-1022.
[37]. Zhang LJ, Hemraz UD, Fenniri H, Webster TJ., Tuning cell adhesion on titanium with osteogenic rosette nanotubes. J Biomed Mater Res A., 2010. 95A: p. 550-563.
[38]. Harnack O, Raible I, Yasuda A, Vossmeyer T., Lithographic patterning of nanoparticle films self-assembled from organic solutions by using a water-soluble mask . Appl Phys Lett., 2005. 86: p. 034101-3.
[39]. Nuzzo RG, Allara DL., Adsorption of Bifunctional Organic Disulfides on Gold Surfaces. J Am Chem Soc., 1983. 105: p.4481-4483.
[40]. Dubois LH, Nuzzo RG., Synthesis, structure and properties of model organic surfaces. Annu Rev Phys Chem, 1992. 43: p. 437– 463.
[41]. Toworfe GK, Bhattacharyya S, Composto RJ, Adams CS, Shapiro IM, Ducheyne P., Effect of functional end groups of silane self-assembled monolayer surfaces on apatite formation, fibronectin adsorption and osteoblast cell function. J Tissue Eng Regen M., 2009. 3: p. 26-36.
[42]. Haller I., Covalently Attached Organic Monolayers on Semiconductor Surfaces. J Am Chem Soc., 1978. 100: p. 8050-8055.
[43]. Sellers H, Ulman A, Shnidman Y, Eilers JE., Structure and Binding of Alkanethiolates on Gold and Silver Surfaces: Implications for Self-Assembled Monolayers. J Am Chem Soc., 1993 115: p. 9389-9401.
[44]. Karpovich DS, Blanchard GJ., Direct Measurement of the Adsorption Kinetics of Alkanethiolate Self-Assembled Monolayers on a Microcrystalline Gold Surface. Langmuir, 1994 10: p. 3315-3322.
[45]. Walker AV, Tighe TB, Cabarcos OM, Reinard MD, Haynie BC, Uppili S, et al., The Dynamics of Noble Metal Atom Penetration through Methoxy-Terminated Alkanethiolate Monolayers. J Am Chem Soc., 2004. 126: p. 3954-3963.
[46]. Laibinis PE, Whitesides GM., Self-Assembled Monolayers of n- Alkanethiolates on Copper Are Barrier Films That Protect the Metal against Oxidation by Air. J Am Chem Soc., 1992. 114: p. 9022-9028.
[47]. Toworfe GK, Composto RJ, Shapiro IM, Ducheyne P., Nucleation and growth of calcium phosphate on amine-, carboxyl- and hydroxyl-silane self-assembled monolayers. Biomaterials, 2006. 27: p. 631-642.
[48]. Singh RP, Way JD, Dec SF., Silane modified inorganic membranes: Effects of silane surface structure. J Membrane Sci., 2005. 259: p. 34-46.
[49]. Campbell AA, Fryxell GE, Linehan JC, Graff GL., Surfaceinduced mineralization: a new method for producing calcium phosphate coatings. J Biomed Mater Res., 1996. 32: p. 111–118.
[50]. Campbell AA, Song L, Li XS, et al., Development, characterization, and anti-microbial efficacy of hydroxyapatite-chlorhexidine coatings produced by surface-induced mineralization. J Biomed Mater Res., 2000. 53: p. 400–407.
[51]. Michael P. Danahy, Michael J. Avaltroni, Kim S. Midwood, Jean E. Schwarzbauer, and Jeffrey Schwartz, Self-assembled Monolayers of r,ö-Diphosphonic Acids on Ti Enable Complete or Spatially Controlled Surface Derivatization. Langmuir, 2004. 20: 5333-5337.
[52]. Nina Adden, Lara J. Gamble, David G. Castner, Andrea Hoffmann, Gerhard Gross, and Henning Menzel, Phosphonic Acid Monolayers for Binding of Bioactive Molecules to Titanium Surfaces. Langmuir, 2006. 22(29): p. 8197.
[53]. Min Lai, Kaiyong Cai, Li Zhao, Xiuyong Chen, Yanhua Hou, and Zaixiang Yang, Surface Functionalization of TiO2 Nanotubes with Bone Morphogenetic Protein 2 and Its Synergistic Effect on the Differentiation of Mesenchymal Stem Cells. Biomacromolecules, 2011. 12: p. 1097–1105.
[54]. Krasimir Vasilev, Zihan Poh , Krishna Kant , Joseph Chan , Andrew Michelmore , Dusan Losic, Tailoring the surface functionalities of titania nanotube arrays. Biomaterials, 2010. 31: p. 532–540.
[55]. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, Enhanced Photocleavage of Water Using Titania Nanotube Arrays. Nano Letters, 2005. 5: p. 191-195.
[56]. Q. Cai, M. Paulose, O. K. Varghese, C. A. Grimes, The effect of electrolyte composition on fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. J. Mater. Res., 2005. 20: p. 230-236.
[57]. G. K. Mor, O. K. Varghese, M. Paulose, N. Mukherjee, C. A. Grimes, Fabrication of tapered, conical-shaped titania nanotubes. J. Mater. Res., 2003. 18: p. 2588-2593.
[58]. E. Hoque, J. A. DeRose, G. Kulik, P. Hoffmann, H. J. Mathieu, and B. Bhushan, Alkylphosphonate Modified Aluminum Oxide Surfaces. J. Phys. Chem. B, 2006. 110: p. 10855-10861.
[59]. Marcinko S, Fadeev AY., Hydrolytic stability of organic monolayers supported on TiO2 and ZrO2. Langmuir, 2004. 20: p. 2270–2273.
[60]. Péter Péchy, et al, Preparation of phosphonated polypyridyl ligands to anchor transition-metal complexes on oxide surfaces: application for the conversion of light to electricity with nanocrystalline TiO2 films. J. Chem. Soc., Chem. Commun., 1995. p. 65 – 66.
[61]. Silverman BM, Wieghaus KA, Schwartz J., Comparative properties of siloxane vs phosphonate monolayers on a key titanium alloy. Langmuir ,2005. 21: p. 225–228.
[62]. Hoque E, DeRose JA, Hoffmann P, Brushan B, Mathieu HJ., Alkylperfluorosilane self-assembled monolayers on aluminum: a comparisation with alkylphosphonate self-assembled monolayers. J Phys Chem, 2007. 111: p. 3956–3962.
[63]. Benjamin G. Keselowsky, David M. Collard, Andres J. Garcıa, Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion, J Biomed Mater Res A., 2003. 66(2): p. 247-259.
[64]. F. Esaka, K. Furuya,H. Shimada, M. Imamura, N. Matsubayashi, H. Sato, and A. Nishijima,A. Kawana and H. Ichimura,T. Kikuchi, Comparison of surface oxidation of titanium nitride and chromium nitride films studied by x-ray absorption and photoelectron spectroscopy. J. Vac. Sci. Technol. A, 1997. 15(5): p. 2521.
[65]. M. Mohai, A. To´ th, I. Sajo´ , T. Ujva´ ri and I. Berto´ ti, Plasma surface modification of Ti and TiAlV alloy. Surf. Interface Anal., 2004. 36: p. 1155–1158.
[66]. A. Glaser , S. Surnev , F.P. Netzer , N. Fateh , G.A. Fontalvo , C. Mitterer, Oxidation of vanadium nitride and titanium nitride coatings. Surface Science, 2007. 601: p. 1153–1159.
[67]. Kaiyong Cai , Marion Frant , J¨org Bossert , Gerhard Hildebrand , Klaus Liefeith , Klaus D. Jandt , Surface functionalized titanium thin films: Zeta-potential, protein adsorption and cell proliferation. Colloids and Surfaces B: Biointerfaces, 2006. 50: p. 1–8.
[68]. Michael A. Lan, Charles A. Gersbach, Kristin E. Michael, Benjamin G. Keselowsky, Andre´s J. Garcıa, Myoblast proliferation and differentiation on fibronectin-coated self assembled monolayers presenting different surface chemistries. Biomaterials, 2005. 26: p. 4523–4531.
[69]. Kristin B. McClary, Tatiana Ugarova, David W. Grainger, Modulating fibroblast adhesion, spreading, and proliferation using self-assembled monolayer films of alkylthiolates on gold. J Biomed Mater Res., 2000. 50(3): p. 428-439.
[70]. N. Faucheux, R. Schweiss, K. Lützow, C. Werner and T. Groth, Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies. Biomaterials, 2004. 25(14): p. 2721-2730.
[71]. P. VINCENZINI and R. BARBUCCI, J. Gustavsson, G. Altankov, A. Errachid, Josep Samitier, Josep A. Planell, Elisabeth Engel, Modulation of biological properties of silicon nitride for biosensor applications by self-assembled monolayers. Advances in Science and Technology, 2006. 53: p. 122-127.
[72]. Johan Gustavsson, George Altankov, Abdelhamid Errachid. Josep Samitier, Josep A. Planell, Elisabeth Engel, Surface modifications of silicon nitride for cellular biosensor applications. J Mater Sci: Mater Med., 2008. 19: p. 1839–1850.