| 研究生: |
姚壬謙 Yao, Ren-Qian |
|---|---|
| 論文名稱: |
化學共沉法製備Co2Z鐵氧磁體粉末之生成機構研究 Investigation on the formation mechanism of Co2Z ferrite powder made by co-precipitation technique |
| 指導教授: |
向性一
Hsiang, Hsing-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 化學共沉法 、鐵氧磁體 |
| 外文關鍵詞: | co-precipitation, Ferrite |
| 相關次數: | 點閱:51 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以高濃度,高pH值快速逆滴定之共沉技術製備Co2Z(Ba3Co2Fe24O41)鐵氧磁體前導粉末。結果發現能在低溫600℃持溫2小時直接生成BaM (BaFe12O19)相,避免了α-Fe2O3、BaFe2O4等中間相生成,並在850℃持溫2小時,得到均勻混合之BaM + Co2Y (Ba2Co2Fe12O22)鐵氧磁體粉末。此粉末在1200℃持溫2小時可合成單一之Co2Z結晶相。本研究製備之Co2Z鐵氧磁體在外加磁場6000Oe下,其飽和磁化量Ms=44.66 emu/g,矯頑磁力Hc=15 Oe擁有軟磁、高飽和磁化之優良磁特性。
文中透過XRD/SEM/TEM等分析,發現BaM與Co2Y,並非在界面直接固態反應合成Co2Z鐵氧磁體,而是隨溫度升高(>900℃),BaM逐漸分解進入Co2Y結構中,形成具有Co2Z組成,但仍維持Co2Y結構之Co2Y*結晶相。隨後Co2Z相才在此Co2Y*基質中成核成長。Co2Y*結晶相由於體積膨脹受周圍之Co2Y束縛,晶格內部受到扭曲,造成其晶格充滿內應力,產生許多雙晶結構。此雙晶結構與殘留應力提高了Co2Z成核能障,而延緩Co2Z相成核,使得其難以在低溫生成單一Co2Z結晶相。
使用溼式行星球磨方式,可有效解除Co2Y*之殘留應力,降低Co2Z成核能障。將球磨後之Co2Y*粉末,直接進行造粒、壓胚,可減短原子擴散距離,有利於Co2Z晶核成長,可在1175℃持溫8小時得到一接近單一Co2Z相之燒結體。
Co2Z (Ba3Co2Fe24O41) ferrite powder was prepared by co-precipitation technique in this study. It is suggested that a better precursor which could produce a single Co2Z phase at a lower calcination temperature can be produced using reverse titration method under high cation concentration and pH. Intermediate phases, such as α-Fe2O3 and BaFe2O4 were not observed during the reaction process. BaM (BaFe12O19) was directly formed from precursor calcined at 600℃/2h, and subsequently Co2Y(Ba2Co2Fe12O22) was formed at 850℃/2h. Then, single phase Co2Z ferrite which had excellent magnetic properties (Hc=15 Oe, Ms = 44.66emu/g at 6000 Oe).
In this study the formation mechanism of Co2Z ferrite was also investigated using XRD, SEM and TEM. It is found that the development of Co2Z was not via the direct reaction of BaM and Co2Y at the interface but via the nucleation and growth process from Co2Y* matrix. As the calcination temperature increased above 900℃, BaM started to decompose and the Ba2+、Fe3+ ions inserted into Co2Y structure, which distorted the structure of Co2Y. The above distorted Co2Y structure which had the stoichiometric composition of Co2Z was called Co2Y*. The twin structure were observed in Co2Y* grains, which was due to the lattice strain induced by the clamping force from the surrounding Co2Y crystallites. Twin structures and residual stress existed in Co2Y* would raise the nucleation barrier of Co2Z. Therefore, it is difficult to obtain a single Co2Z phase at a lower calcination temperature.
The lattice strain existed in Co2Y* could be released after a short period of wet planetary milling, which lower the nucleation barrier of Co2Z. The development of Co2Z phase in milled Co2Y* powder could be further enhanced using unidirection pressing method to decrease the atomic diffusion distance. The single Co2Z phase could be obtained after sintering the green body made by milled Co2Y* powder.
[1]J. Smit and H. H. J. Wijn, Ferrite, Philips Technical Library, Eindhoven, Netherlands, 1959, p. 278.
[2]E. C. Snelling and A. D. Giles, Ferrites for Inductors and Transformers, Research Studies Press Ltd., England, 1986 , p. 58.
[3]H.I. Hsiang and H.H. Duh, “Effects of Glass Addition on Sintering and Magnetic Properties of 3Ba0.5‧Sr0.5O‧2CoO‧12Fe2O3 for High Frequency Applications,”J. Mater. Sci. 36 (2001) 2081-2087.
[4]G.H. Jonker, H. P. J. Wijn and P.B. Braun, “Ferroxplana, Hexagonal Ferromagnetic Iron-Oxide Compound for Very High Frequencies,” Philips. Tech. Rev. 18 (1956) 145-180.
[5]剛本祥一、近桂一郎,磁性陶瓷(Magnetic Materials Ceramics),黃忠良譯,復漢出版社,1998。
[6]T. Nakamura, Y. Okano, and Y. Miura,“Interfacial Diffusion between Ni–Zn–Cu Ferrite and Ag during Sintering,” J. Mater. Sci. 33 (1998) 1091-1094.
[7]T. Tachibana, T. Nakagawa, Y. Takada, K. Izumi, T.A. Yamamoto, T. Shimada, and S. Kawano, “X-ray and Neutron Diffraction Studies on Iron-Substituted Z-type Hexagonal Barium Ferrite: Ba3Co2−xFe24+xO41 (x=0–0.6),” J. Magn. Magn. Mater. 262 (2003) 248-257.
[8]O. Kimura, “Magnetic of Co2Z for Ultra High Frequency Uses,” Techna. Srl. (1995) 2697-2704.
[9]H. Zhang, J. Zhou, Z. Yue, P. Wu and Z. Gui, “Synthesis of Co2Z Hexagonal Ferrite with Planar Structure by Gel Self-Propagating Method,” Mater. Letters 43 (2000) 62-65.
[10]X.H. Wang, L. Li, Z. Gui, S. Shu, and J.Zhou, “Preparation and Characterization of Ultrafine Hexagonal Ferrite Co2Z Powders,” Mater. Chem. Phys. 77 (2002) 248-253.
[11]G. Xiong, G. Wei X. Yang, L. Lu and X. Wang,“Characterization and Size-Dependent Magnetic Properties of Ba3Co2Fe24O41,” J. Mater. Sci. 35 (2000) 931-936.
[12]C. Sudakar, G.N. Subbanna, and T.R.N. Kutty, “Wet Chemical Synthesis of Multicomponet Hexaferrites by Gel-to-Crystallite Conversion and Their Magnetic Properties,” J. Magn. Magn. Mater. 236 (2003) 253-268.
[13]R.C. Pullar and A.K. Bhattacharya, “The Synthesis and Characterization of the Hexagonal Z Ferrite, Sr3Co2Fe24O41, from a Sol-Gel Precursor,” Mater. Res. Bull. 36 (2001) 1531-1538.
[14]黃啟原,陶瓷材料特性–E.M.O. Properties上課講義,2002。
[15]S. Chikazumi and C. D. Graham, Jr., Physics of Ferromagnetism, 2nd ed.,
Oxford University Press Inc., New York,1997.
[16]陳文泉,重金屬水廢水鐵氧磁體法處理之基礎研究,國立成功大學礦冶及材料科學研究所碩士論文,1992。
[17]陳威倩,以γ→α-Fe2O3相變機制製作α-Fe2O3微粒,國立成功大學
資源工程所碩士論文(2001)。
[18]M.S. Multani and P. Ayyub, “Size and Pressure Driven Phase
Transitions ,” Condens. matter news.1 (1991) 25-27.
[19]J. Majzlan, A. Navrotsky and U. Schwertmann, “Thermodynamics of Iron Oxides: Part Ⅲ.Enthalpies of Formation and Stability of Ferrihydrite(~Fe(OH)3), Schwertmannite(~FeO(OH)3/4(SO4)1/8),andε-Fe2O3,” Geochimica et Cosmochimica Acta, 68 (2004) 1049-1059.
[20]J. M. Trautmann and H. Forestier, C.R. Acad. Sci.(Paris) 261(1965)
P.4423.
[21]N. Viart, J.L. Rehspringer, Hyperfine Interact.112(1998) P.89.
[22]E. Tronc, C. Chaneac and P. Jolivet, “Structural and Magnetic Characterization ofε-Fe2O3,” J. Solid State chem. 139 (1998) 93-104.
[23]S. Ponce, J.R. Martinez and S. Palomares, “Infrared Spectroscopy Analysis of Oxyhydroxides as Intermediate Species in the Formation of Iron Oxides-Silica Xerogels,” Journal of sol-gel Science and Technology 27 (2003) 247-254.
[24]林世忠,陳化處理對化學沉澱法生成之奈米二氧化鈦粉末之晶粒成
長及相轉換的影響,國立成功大學資源工程所碩士論文,2004。
[25]向性一,陶瓷製程上課講義,2003。
[26]余樹楨著,”晶體之結構與性質”渤海堂文化公司出版,p. 526 ,1996。
[27]M.J. Buerger, “The Genesis of Twin Crystals”, Am. Mineral.30 (1971)
469-482.
[28]C. Klein and C. S. Hurlbut,Jr.,Manual of Mineralogy,John Wiley and
Sons, Inc.,21st Ed, New York, 1993.
[29]N. K. Simha, “Twin and Habit Plane Microstructures Due to the Tetragonal to Monoclinic Transformation of Zirconia,” J. Mech. Phys. Solids. 45 (1997) 261-292.
[30]G. Arlt, “Twinning in Ferroelectric and Ferroelastic Ceramics: Stress
Relief,” J. Mater. Sci. 25 (1990) 2655-2666.
[31]T.T. Fang, J.T. Shiue and S.C. Liou, “Formation Mechanism and Sintering Behavior of Ba2Ti9O20,” J. Europ. Ceram. Soc. 22 (2002) 79-85.
[32]B.D. Cullity, Elemens of X-ray Diffraction, 2nd ed., Addison-Wesley
Publishing Co. Inc., London, 1978.
[33]化學技術手冊,黃益次譯,台北大中國圖書公司出版411頁。
[34]J. Huang, H. Zhuang and W. Li, “Synthesis and Characterization of Nano Crystalline BaFe12O19 Powders by Low Temperature Combustion,” Mater. Res. Bull. 38 (2003) 149-159.
[35]H.P. Steier, J. Requena and J.S. Moya, “Transmission Electron Microscopy Study of Barium Hexaferrite Formation from Carbonate and Hematite,” J. Mater. Res. 14 (1999) 3647-3652.
[36]J.M. Yang, W.J. Tsuo and F.S. Yen, “Preparation of Ultrafine Nickel Ferrite Powders Using Mixed Ni and Fe Tartrates,” J. Solid State Chem. 145 (1999) 50-57.
[37]洪辰宗,以酒石酸鹽法合成鋇鐵氧磁體(BaM=BaFe12O19)粉末過程中
之幾個重要問題探討,國立成功大學資源工程所碩士論文(2003)。
[38]T. Tachibana, T, Shimada, K.Ohta, T. Nakagawa, T.A. Yamamoto and M. Katsura, “Thermally Stable Region and Magnetic Properties of Z-type Hexagonal Ferrite:Ba3Co2-xFe24+xO4,” The Japan Society of Powder Metallurgy (2000) 888-890.
[39]W. D. Kingery, H.K. Bowen, D.R. Uhlmann, “Introduction to Ceramics”,
John Wiley & Sons, New York, 2nd Ed.,1976
[40]O. Kimura, “Enhanced Dispersion Frequency of Hot-Pressed Z-Type
Magnetoplumbite Ferrite with the Compostion 2CoO‧3Ba0.5Sr0.5O‧
10.8Fe2O3,” J. Am. Ceram. Soc. 78 (1995) 2857-2860.