簡易檢索 / 詳目顯示

研究生: 沈子勛
Shen, Tzu-Hsun
論文名稱: 比較探討垂直入射和邊射之(氮)砷化銦鎵/砷化鎵光檢測器
Comparative Study of Vertically-Incident and Edge-Coupled InGaAs(N)/GaAs-based Photodetectors
指導教授: 莊文魁
Chuang, Ricky Wenkuei
蘇炎坤
Su, Yan-Kuin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 94
中文關鍵詞: 光檢測器砷化鎵
外文關鍵詞: photodetector, GaAs
相關次數: 點閱:67下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,砷化銦鎵/砷化鎵光檢測器是由金屬有機化學氣相沉積法成長。首先,我們製做了垂直入射型的光檢測器,並且量測元件的光響應值跟量子效率,量測出來的結果,得到較低的光響應值跟量子效率,這表示在吸收效率上,並沒有很理想,為了改善這些缺點,我們製做邊射型的光檢測器,我們發現,邊射型的光檢測器可以在不改變磊晶結構的條件下,而可以在光響應值跟量子效率上,得到至少十倍的改善。
    我們在砷化銦鎵中,掺入少量的氮,達到波長1.3微米。同樣地,在不改變磊晶結構的前提下,藉由製做邊射型光檢測器,可以得到較好的光響應值跟量子效率。最後,我們可以藉由掺入銻來改善我們的磊晶結構,降低光檢測器的暗電流。

    In this thesis, InGaAs/GaAs-based photodetectors are grown by metal organic vapor phase epitaxy (MOVPE). First, vertically-incident photodetectors are formed, but with low responsivity and quantum efficiency. In order to improve their performances without changing the epitaxial structures, the edge-coupled photodetectors were fabricated for comparison. The responsivity of edge-coupled photodetectors was achieved with more than 10 times of improvement compared to conventional vertically-incident photodetectors.
    To achieve 1.3um photodetection, nitrogen was incorporated into InGaAs to extend absorption wavelength to the desired target. Similarly, The responsivity and quantum efficiency of edge-coupled photodetectors were also improved without changing the epitaxial structures. Finally, an improvement in the quality of epitaxial photodetector structures could be realized through additional antimony incorporation, where a reduction in the dark current was noted.

    Contents Abstract (In Chinese) .................................................................................. I Abstract (In English) .................................................................................. II Acknowledgements .................................................................................... IV Contents ....................................................................................................... V Table Captions ........................................................................................ VIII Figure Captions ......................................................................................... IX Chapter 1 Introduction .................................................................... 1 1-1 Introduction ..................................................................... 2 1-2 Long Wavelength GaAs-based Photodetectors ............... 5 1-3 Organization of the Thesis .............................................. 8 Chapter 2 Background Theory ...................................................... 9 2-1 Theoretic Foundation of the Photodetectors .............. 10 2-1-1 Mechanism of the Current Transport for Junction Photodetectors................................................................ 10 2-1-2 Mechanisms of p-i-n Photodetectors ............................ 12 2-1-3 Theory of Edge-Coupled Photodetectors ...................... 14 2-2 Theoretical Analysis of p-i-n Photodetectors ............... 16 2-2-1 Dark Current ................................................................. 16 2-2-2 Responsivity and Quantum Efficiency ......................... 21 2-2-3 Junction Breakdown Voltage ........................................ 22 2-3 Metal Organic Vapor Phase Epitaxy Growth System ... 25 2-3-1 Kinetically Limited Region ........................................... 29 2-3-2 Thermodynamically Limited Region ............................ 30 2-3-3 Mass Transport Limited Region ................................... 30 2-4 Measurement System .................................................... 31 2-4-1 Current-Voltage Measurement System ......................... 31 2-4-2 Vertically-Incident Responsivity Measurement System ........................................................................... 32 2-4-3 Edge-Coupled Responsivity Measurement System ...... 33 Chapter 3 Vertically-Incident and Edge-Coupled InGaAs/GaAs MQW p-i-n Photodetectors ........................................ 34 3-1 InGaAs/GaAs MQW p-i-n Structures ........................... 35 3-2 Fabrication Process ....................................................... 36 3-2-1 Vertically-Incident Photodetectors ............................... 36 3-2-2 Edge-Coupled Photodetectors ....................................... 39 3-3 Comparison of Vertically-Incident and Edge-Coupled InGaAs/GaAs MQW p-i-n Photodetectors ................... 43 3-4 Comparison of Different Periods of InGaAs/GaAs MQW p-i-n Photodetectors ...................................................... 52 3-5 Summary ....................................................................... 64 Chapter 4 1.3m InGaAsN/GaAs MQW p-i-n Photodetectors . 65 4-1 InGaAsN/GaAs MQW p-i-n Structures ........................ 66 4-2 Comparison of Vertically-Incident and Edge-Coupled InGaAsN/GaAs MQW p-i-n Photodetectors ................ 67 4-3 Improvement of Responsivity by Antimony Incorporation ................................................................. 75 4-4 Summary ....................................................................... 81 Chapter 5 Conclusions and Future Work ................................... 82 5-1 Conclusions ................................................................... 83 5-2 Future Work .................................................................. 85 References .................................................................................................. 87

    References
    Chapter 1
    [1] C. R. Pollock, “Fundamentals of Optoelectronics”, Introduction and Overview, pp. 7, 1995.
    [2] J. S. Harris Jr., “GaInNAs long-wavelength lasers: progress and challenges”, Semiconductor Science and Technology, Vol. 17, No. 8, pp. 880-891, August 2002.
    [3] J. Hecht, “Understanding Fiber Optics”, Upper Saddle River, NJ: Prentice Hall, 2002.
    [4] S. R. Kurtz, A. A. Allerman, E. D. Jones, J. M. Gee, J. J. Banas, and B. E. Hammons, “InGaAsN solar cells with 1.0 eV band gap, lattice matched to GaAs”, Applied Physics Letters, Vol. 74, No. 5, pp. 729-731, February 1999.
    [5] J. F. Geisz, D. J. Friedman, J. M. Olson, Sarah R. Kurtz, and B. M. Keyes, “Photocurrent of 1 eV GaInNAs lattice-matched to GaAs”, Journal of Crystal Growth, Vol. 195, No. 1-4, pp. 401-408, December 1998.
    [6] D. J. Friedman, J. F. Geisz, Sarah R. Kurtz, and J. M. Olson, “1-eV solar cells with GaInNAs active layer”, Journal of Crystal Growth, Vol. 195, No. 1-4, pp. 409-415, December 1998.
    [7] M. Kondow, S. I. Nakatsuka, T. Kitacani, Y. Yazawa, and M. Okai, “Room-temperature pulsed operation of gainnas laser diodes with excellent high-temperature performance”, Japanese Journal of Applied Physics, Vol. 35, Part 1, No. 11, pp. 5711-5713, October 1996.
    [8] W. G. Bi and C. W. Tu, “Bowing parameter of the band-gap energy of GaNxAs1 – x”, Applied Physics Letters, Vol. 70, No. 12, pp. 1608-1610, March 1997.
    [9] K. Nakahara, M. Kondow, T. Kitacani, M. C. Larson, and K. Uomi, “1.3μm continuous-wave lasing operation in GaInNAs quantum-well lasers”, IEEE Photonics Technology Letters, Vol. 10, No. 4, pp. 487-488, April 1998.
    [10] B. Sung, H. C. Chui, M. M. Fejer, and J. S. Harris, Jr., “Near-infrared wavelength intersubband transitions in high indium content InGaAs/AlAs quantum wells grown on GaAs”, Electronic Letters, Vol. 33, No. 9, pp. 818-820, April 1997.
    [11] J. Y. Duboz, J. A.Gupta, M. Byloss, G. C. Aers, H. C. Liu, and Z. R. Wasilewski, “Intersubband transitions in InGaNAs/GaAs quantum wells”, Applied Physics Letters, Vo. 81, No. 10, pp. 1836-1838, September 2002.
    [12] E. Luna, M. Hopkinson, J. M. Ulloa, A. Guzman, and E. Munoz, “Dilute nitride based double-barrier quantum-well infrared photodetector operating in the near infrared”, Applied Physics Letters, Vol. 83, No. 15, pp. 3111-3113, October 2003.
    [13] S. M. Spaziani, K. Vaccaro and J. P. Lorenzo, “High performance substrate-removed InGaAs schottky photodetectors”, IEEE Photonics Technology Letters, Vol. 10, No. 8, pp. 1144-1146, August 1998.
    [14] R. H. Yuang and J.-I. Chyi, “Effects of finger width on large-area InGaAs MSM photodetectors”, Electronic Letters, Vol. 32, No. 2, pp. 131-132, January 1996.
    [15] M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, and Y. Yazawa, “GaInNAs: A Novel Material for Long-Wavelength-Range Laser Diodes with Excellent High-Temperature Performance”, Japanese Journal of Applied Physics, Vol. 35, No. 2B, pp. 1273-1275, February 1996.
    Chapter 2
    [1] R. G. Hunsperger, “Integrated Optics Theory and Technology”, 5th Edition, Chapter 17 Integrated Optical Detectors, pp. 299-307, 2002.
    [2] J. C. Campbell, AT&T Bell Lab. Technical Memorendum (unpublished).
    [3] S. M. Sze, “Semiconductor Devices Physics and Technology”, Chapter 3.
    [4] Jasprit Singh, “Semiconductor Optoelectronics Physics and Technology”, Chapter 6 Semiconductor junction theory, pp. 286, 1995.
    [5] G. Dearnaley, J. H. Freeman, R. S. Nelson, Stephen, “Ion-Implantation”, Chapter 5 Applications to semiconductors, pp. 561, 1973.
    [6] S. R. Forrest, M. Jr. Didomenico, R. G. Smith, H. J. Stocker, “Evidence for tunneling in reverse-biased III-V photodetector diodes”, Applied Physics Letters, Vol. 36, No. 7, pp. 580-582, April 1980.
    [7] S. R. Forrest, R. F. Leheny, R. E. Nahory, M. A. Pollack, “In0.53Ga0.47As photodiodes with dark current limited by generation-recombination and tunneling”, Applied Physics Letters, Vol. 37, No. 3, pp. 320-325, August 1980.
    [8] H. M. Manasevit and W. I. Simpson, “The use of metal-organics in the preparation of semiconductor materials”, Journal of Electrochemical Society, Vol. 116, No. 12, pp. 1725-1732, December 1969.
    [9] H. M. Manasevit, “Single-crystal gallium arsenide on insulating substrates”, Applied Physics Letters, Vol. 12, No. 4, pp. 156-159, February 1968.
    [10] H. M. Manasevit, “The use of metalorganics in the preparation of semiconductor materials: Growth on insulating substrates”, Journal of Crystal Growth, Vol. 13-14, pp. 306-314, May 1972.
    [11] J.-T. Zettler, K. Haberland, M. Zorn, M. Pristovsek, W. Richter, P. Kurpas and M. Weyers, “Real-time monitoring of MOVPE device growth by reflectance anisotropy spectroscopy and related optical techniques”, Journal of Crystal Growth, Vol. 195, No. 1-4, pp. 151-162, December 1998.
    [12] Aixtron 200 User’s Manual, Aixtron AG.
    [13] Carl Asplund’s thesis, KTH, 2003.
    [14] G.B. “Stringfellow, Organometallic Vapor-Phase Epitaxy: Theory and Practice”, 2nd Edition, Academic Press, San Diego, 1999.
    [15] D. Schlenker, T. Miyamoto, Z. B. Chen, M. Kawaguchi, T. Kondo, E. Gouardes, F. Koyama and K. Iga, “Critical layer thickness of 1.2-μm highly strained GaInAs/GaAs quantum wells”, Journal of Crystal Growth, Vol. 221, No. 1-4, pp. 503-508, December 2000.
    [16] F. Salomonsson, C. Asplund, S. Mogg, G. Plaine, P. Sundgren, M. Hammar, “Low-threshold, high-temperature operation of 1.2μm InGaAs vertical cavity lasers”, Electronic Letters, Vol. 37, No. 15, pp. 957-958, July 2001.
    [17] C. Asplund, P. Sundgren, S. Mogg, M. Hammar, U. Christiansson, V. Oscarsson, C. Runnstrom, E. Odling, J. Malmquist, “1260nm InGaAs vertical-cavity lasers”, Electronic Letters, Vol. 38, No. 13, pp. 635-636, June 2002.
    [18] A. Ougazzaden, Y. Le Bellego, E. V. K. Rao, M. Juhel, L. Leprince, and G. Patriarche , “Metal organic vapor phase epitaxy growth of GaAsN on GaAs using dimethylhydrazine and tertiarybutylarsine”, Applied Physics Letters, Vol. 70, No. 21, pp. 2861- 2863, May 1997.
    [19] G. Plaine, C. Asplund, P. Sundgren, S. Mogg, M. Hammar, “Low-temperature Metal-organic Vapor-phase Epitaxy Growth and Performance of 1.3µm InGaAsN/GaAs Single Quantum Well Lasers”, Japanese Journal of Applied Physics, Vol. 41 Part 1, No. 2B, pp. 1040-1042, February 2002
    [20] C. Asplund, P. Sundgren, M. Hammar, Proceedings of the 14th Indium Phosphide and Related Materials Conference, Stockholm, pp. 619-621, May 12-16, 2002.
    [21] T. F. Kuech, D. J. Wolford, E. Veuhoff, V. Deline, P. M. Mooney, R. Potemski, and J. Bradley, “Properties of high-purity AlxGa1−xAs grown by the metalorganic vapor-phase-epitaxy technique using methyl precursors”, Journal of Applied Physics, Vol. 62, No. 2, pp. 632-643, July 1987.
    [22] A. C. Jones, “Metalorganic precursors for vapour phase epitaxy”, Journal of Crystal Growth, Vol. 129, No. 3-4, pp. 728-773, April 1993
    [23] C. Asplund, A. Fujioka, M. Hammar, G. Landgren, “Annealing studies of metal-organic vapor phase epitaxy grown GaInNAs bulk and multiple quantum well structures”, EW-MOVPE VIII, Prague, June 8-11, pp. 437-440, 1999.

    Chapter 3
    [1] D. A. B. Miller, D. S. Chemla, and T. C. Damen, “Band-Edge Electroabsorption in Quantum Well Structures: The Quantum-Confined Stark Effect”, Physical Review Letters, Vol. 53, No. 22, pp. 2173-2176, November 1984.
    Chapter 4
    [1] Q. Han, X. H. Yang, Z. C. Niu, H. Q. Ni, Y. Q. Xu, S. Y. Zhang, Y. Du, L. H. Peng, H. Zhao, C. Z. Tong, R. H. Wu, and Q. M. Wang, “1.55m GaInNAs resonant-cavity-enhanced photodetector grown on GaAs”, Applied Physics Letters, Vol. 87, No. 11, Articles 111105, September 2005.
    [2] S. R. Bank, H. B. Yuen, H. Bae, M. A. Wistey, A. Moto, and J. S. Harris, Jr., “Enhanced luminescence in GaInNAsSb quantum wells through variation of the arsenic and antimony fluxes”, Applied Physics Letters, Vol. 88, No. 2, Articles 241923, June 2006.
    [3] S. R. Bank, H. P. Bae, H. B. Yuen, M. A. Wistey, L. L. Goddard, and J. S. Harris, Jr., “Room-temperature continuous-wave 1.55 /spl mu/m GaInNAsSb laser on GaAs”, Electronic Letters, Vol. 42, No. 3, pp. 156-157, February 2006.
    [4] L. L. Goddard, S. R. Bank, M. A. Wistey, H. B. Yuen, and J. S. Harris Jr., “High-performance GaInNAsSb/GaAs lasers at 1.5m”, SPIE, Vol. 5738, pp. 180-191, April 2005.
    [5] W. K. Loke, S. F. Yoon, K. H. Tan, S. Wicaksono, and W. J. Fan, “Improvement of GaInNAs p-i-n photodetector responsivity by antimony incorporation”, Journal of Applied Physics, Vol. 101,No. 3, Articles 033122, February 2007.
    [6] N. Tansu and L. J. Mawst, “Low-threshold strain-compensated InGaAs(N) (λ = 1.19-1.31μm) quantum-well lasers”, IEEE Photonics Technology Letters, Vol. 14, No. 4, pp. 444-446, April 2002.

    Chapetr 5
    [1] W.K. Loke, S.F. Yoon, S. Wicaksono, B.K. Ng, “Characteristics of non-annealed lambda=1.35m closely lattice-matched GaInNAs/GaAs p-i-n photodetector structures grown by solid-source molecular beam epitaxy”, Materials Science and Engineering B, Vol. 131, No. 1-3, pp. 40-44, July 2006.
    [2] J. S. Ng, W. M. Soong, M. J. Steer, M. Hopkinson, J. P. R. David, J. Chamings, S. J. Sweeney, and A. R. Adams, “Long wavelength bulk GaInNAs pin photodiodes lattice matched to GaAs”, Journal of Applied Physics, Vol.101, No. 6, Articles 064506, March 2007.
    [3] W. K. Cheah, W. J. Fan, S. F Yoon, D. H. Zhang, B. K. Ng, W. K. Loke, R. Liu, and A. T. S. Wee, “GaAs-Based Heterojunction p-i-n Photodetectors Using Pentanary InGaAsNSb as the Intrinsic Layer”, IEEE Photonics Technology Letters, Vol. 17, No. 9, pp. 1932-1934, September 2005.
    [4] Wei Zhang, Zhong Pan, Lianhe Li, Ruikang Zhang, Yaowang Lin, and Ronghan Wu, “1.3μm GaInNAs/GaAs Multiple-Quantum-Wells Resonant-Cavity-Enhanced Photodetectors”, SPIE, Vol. 4580, pp. 225-231, APOC 2001, Beijing, China, 2001.
    [5] J. B. He´ roux, X. Yang, and W. I. Wang, “GaInNAs resonant-cavity-enhanced photodetector operating at 1.3m”, Applied Physics Letters, Vol. 75, No. 18, pp. 2716-2718, November 1999.
    [6] K. Kato, A. Kozen, Y. Muramoto, Y. Itaya, T. Nagatsuma, and M. Yaita, “110-GHz, 50%-efficiency mushroom-mesa waveguide p-i-n photodiode for a 1.55-m wavelength,” IEEE Photonics Technology Letters, Vol. 6, No. 6, pp. 719-721, Jun 1994.
    [7] G. Unterb¨orsch, D. Trommer, A. Umbach, R. Ludwig, and H.G. Bach, “High-power performance of a high-speed photodetector,” 24th Europe Conference Optical Communication, Vol. 1, pp. 67–68, September 1998.
    [8] A. Beling, D. Schmidt, H.-G. Bach,G.G.Mekonnen, R. Ziegler,V. Eisner, M. Stollberg, G. Jacumeit, E. Gottwald, C.-J. Weiske, and A. Umbach, “High-power 1550nm twin-photodetector modules with 45 GHz bandwidth based on InP”, Optical Fiber Communication Conference and Exhibit, pp. 274-275, March 2002.
    [9] A. Beling, H.-G. Bach, D. Schmidt, G. G. Mekonnen, R. Ludwig, S. Ferber, C. Schubert, C. Boerner, B. Schmauss, J. Berger, C. Schmidt, U. Troppenz, and H. G. Weber, “Monolithically integrated balanced photodetector and its application in OTDM 160 Gbit/s DPSK transmission”, Electronic Letters, Vol. 39, No. 16, pp. 1204-1205, August 2003.

    下載圖示 校內:2009-07-09公開
    校外:2009-07-09公開
    QR CODE