簡易檢索 / 詳目顯示

研究生: 蕭吉良
Hsiao, Chi-Liang
論文名稱: 低塑性粉土內部沖蝕性質之研究
Study on Internal Erosion of Low Plastic Silty Sands
指導教授: 陳景文
Chen, Jing-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 129
中文關鍵詞: 低塑性粉土內沖蝕效應Flexible Wall Pinhole試驗
外文關鍵詞: low plastic silt, internal erosion effects, Flexible Wall Pinhole Test
相關次數: 點閱:139下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 低塑性粉土因其特殊及敏感之特性,於國內眾多公共工程導致重大工安事故,其中又以深開挖與潛盾隧道施工時引致之管湧災害最為迅速與嚴重;經由相關調查結果可知,災害發生主因大多為敏感性低塑性粉土受內沖蝕效應擾動而産生,然而國內外對此一課題仍未見相關有效之研究。故本研究將利用一系列之分析與試驗,比較現有評估法之優劣,並開發一新式之Flexible Wall Pinhole(簡稱FWP)試驗儀,藉由相關實驗數據來探討內沖蝕效應對低塑性粉土工程性質之影響。
    現今用以探討土壤內沖蝕效應方法大致可分為理論與試驗可概分為兩大類,理論法有包含Kenney and Lau(1986)分析原則與管湧理論分析。其中Kenney and Lau(1985)原則雖可考量整體顆粒組成,但無法考量沖蝕水流之作用壓力大小,故仍有不足之處;傳統管湧試驗雖可補足前述之之缺陷,但無法有效地觀察土體內顆粒之孔隙變化,故研究中進一步採用針孔試驗探究其分散性質,但仍因低塑性粉土不具塑性,無法有效分析其內沖蝕效應力影響,且忽略現地有效應力與水壓力之影響,故自行研發FWP試驗儀,以探討內沖蝕效應對低塑性粉土工程性質之影響。
    經由FWP試驗結果可知,低塑性粉土之抗內沖蝕能力隨著細粒料含量增加而減少,且隨試體緊密程度提高而加大;由此可知,對於問題低塑性粉土而言,可藉由降低地下水位與提高土層密度等方法,增加其抗內沖蝕效應力能力。

    Due to the characteristic of high sensitivity, the low plastic silty sand has induced disasters in several deep excavation projects in Taiwan. The main reason of the disaster can be attributed to the disturbance generating the internal erosion in low plastic silty sand.
    There are two main categories to investigate the internal erosion in soils. Kenney and Lau (1986) based on the principle of the piping and considered the whole composition of the particle of the soil, however, the water pore pressure did not take into account in analysis. The traditional piping test may complement the Kenney and Lau’s theory, but the pore change in soil particles was not able to observe effectively in the test. The further developed pinhole test can explore the diffusion properties of soil, however, for a low plastic soil, the data obtained from pinhole test can still not analyze effectively the internal erosion stress and also neglect the influence of in-situ effective stress and water pressure.
    In this study, a Flexible Wall Pinhole instrument is developed. The test results shows that the internal erosion resistance decreased and the degree of soil tightness increased as the fine content of the low plastic silty sands increased. And as reducing the groundwater level and increasing the soil density, the internal erosion resistance of low plastic silty sand increased.

    摘要 I ABSTRACT III 誌謝 V 目錄 IX 表目錄 XIII 圖目錄 XV 照片目錄 XIX 符號說明 XXIII 第一章 緒 論 1 1-1 前言 1 1-2 研究動機 2 1-3 研究目的 2 1-4 論文架構 3 第二章 文獻回顧 5 2-1 工程災害案例簡介 5 2-2低塑性粉土工程性質介紹 16 2-2-1成份組成 16 2-2-2微觀結構 17 2-2-3基本指數性質 18 2-2-4顆粒組構特性 18 2-2-5應力應變行為 22 2-3管湧穩定分析 22 2-3-1理論分析法 23 2-3-2試驗分析法 25 2-4分散性分析判定 25 2-4-1針孔試驗法(Pinhole Test) 27 2-4-2雙比重計法( Double Hydrometer Test ) 28 2-4-3碎塊試驗( Crumb Test ) 29 2-4-4孔隙水離子分析法(Analysis of Pore Water Extract) 30 2-4-5輔助性試驗 32 2-5 重模製作方式 32 第三章 試驗方法與儀器介紹 35 3-1 土樣來源 35 3-2試驗內容 38 3-3管湧試驗(Piping Test) 38 3-3-1試驗儀器介紹 39 3-3-2試驗步驟 40 3-4分散性試驗(Dispersive Test) 43 3-4-1分散性試驗法比較 43 3-4-2試驗儀器介紹 44 3-4-3試驗步驟 47 3-5 Flexible Wall Pinhole Test研發 49 3-5-1設計理念 49 3-5-2試驗儀器介紹 50 3-5-3沖蝕之試驗條件 65 3-5-4試驗步驟 65 第四章 試驗結果分析 71 4-1 試驗土樣之基本性質 71 4-2顆粒穩定分析結果 79 4-3 管湧試驗結果 81 4-4針孔試驗結果 83 4-5 Flexible Wall Pinhole Test結果 85 4-5-1細粒料含量對緊密砂土抗內沖蝕效應之影響 86 4-5-2細粒料含量對疏鬆砂土抗內沖蝕效應之影響 96 第五章 結論與建議 109 5-1結論 109 5-2建議 111 參考文獻 113 附錄一 115 附錄二 119 附錄三 123 作者簡歷 129

    1. 林智偉,「無塑性細料對砂質土壤液化阻抗之研究」,國立成功大學土木工程系研究所,碩士論文,2006。
    2. 倪勝火,國立成功大學土壤力學實驗手冊,2006。
    3. 財團法人臺灣營建研究院,「高雄捷運工程橘線CO1區段標SUO01車站連續壁滲水坍塌事故再分析與對應契約影響之研究報告」,2007。
    4. 財團法人臺灣營建研究院,「高雄捷運工程橘線CO2區段標LUO09潛盾隧道坍陷原因鑑定報告」,2006。
    5. 游家豪,「低塑性細料對粉質砂土動態性質之影響」,國立成功大學土木工程系研究所,碩士論文,2007。
    6. 萬鼎工程公司,「高雄捷運紅橘線路網補充地質調查工程地質調查報告書」,2001。
    7. 葉向陽,分散性黏土及其處理方式,現代營建雜誌,地下工程實務(二),台灣,台北,1985。
    8. 廖元憶,「台灣西南沿海高細粒料含量砂土的探討」,國立成功大學土木工程系研究所,碩士論文,2005。
    9. 潘家錚主編,土石壩,水利電力出版社,中國,北京,1992。
    10. ASTM Standard D4221-99 Standard Test Method for Dispersive Characteristics of Clay Soil by Double Hydrometer. ASTM International,West Conshohocken, PA.www.astm.org, 2005.
    11. ASTM Standard D4647-06 Standard Test Method for Identification and Classification of Dispersive Clay Soils by the Pinhole test. ASTM International,West Conshohocken, PA..www.astm.org, 2006.
    12. ASTM Standard D6572-06 Standard Test Methods for Determining Dispersive Characteristics of Clayey Soils by the Crumb Test. ASTM International,West Conshohocken, PA…www.astm.org, 2006.
    13. Decker,R.S.,& Dunnigan, L.P.,”Dispersive and Use of the SCS Dispersion Test,”Paper Submitted for ASTM Symposium on Dispersive Clay, June, 1976.
    14. Ishihara, K. and Lee, W. F. “Forensic diagnosis for site-specific ground conditions in deep excavations of subway constructions,” Geotechnical and Geophysical Site Characterization, Proceeding of the 3rd International Conference on Site Characterization, Taipei, Taiwan, pp.31-59, 2008.
    15. Ishihara, K. Liquefaction and Flow Failure During Earthquakes, Geotechnique, Vol.43, No.3, pp.315-415, 1993.
    16. Kenney, T. C. & Lau, D. “Discussion on Internal stability of granular filters” Can. Geotech. J. 23,420-423, 1986.
    17. Kenney, T. C. & Lau, D. “Internal stability of granular filters.” Can. Geotech. J. 22,215-225, 1985.
    18. Sherard, J. L., et. al., “Identification and Nature of Dispersive Soils,”J. Geotech. Eng. Div., ASCE, Vol 102, No. GT-4, pp. 287–301, 1976.
    19. Sherard, J. L., et. al., “Pinhole Test for Identifying Dispersive Soils,”J. Geotech. Eng. Div., ASCE, Vol 102, No. GT-1, pp. 69–85, 1976.
    20. Yamamuro J.A., Covert K.M. “Monotonic and cyclic liquefaction of very loose sands with high silt content,” Journal of Geotechnical and Geoenvironmental Engineering, 127 (4), pp. 314-324, 2001.

    下載圖示 校內:2015-08-30公開
    校外:2015-08-30公開
    QR CODE