| 研究生: |
楊燕菱 Yeok, Yen-Linn |
|---|---|
| 論文名稱: |
在複製壓力下SMARCAL1穩定複製叉的機制 The function of SMARCAL1 translocase stabilizes replication forks during replication stress |
| 指導教授: |
廖泓鈞
Liaw, Hung-Jiun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 49 |
| 外文關鍵詞: | SMARCAL1, HLTF, homologous recombination, sister chromatid exchange, DNA fiber |
| 相關次數: | 點閱:182 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
DNA複製壓力對基因組的完整性構成了巨大威脅。 其中,DNA轉位酶SMARCAL1和HLTF被募集到停滯的複製叉中,去穩定並防止複製叉的斷裂。HLTF和SMARCAL1是否具有功能上的重疊性或它們是否參與解決不同類型的DNA損傷,這其中的機制並不清楚。在本篇研究中,我們發現SMARCAL1在複製叉穩定性中扮演重要的角色。 在 Sister chromatid exchange (SCE) 的實驗中發現,SMARCAL1的缺失提高了姐妹染色體互換。在單分子DNA Fibre分析顯示,在MMS的處理造成DNA損傷下,SMARCAL1會降低DNA複製的速率。另外,在SMARCAL1和HLTF雙缺失下更明顯的提高了細胞對藥物Methyl methanesulfonate (MMS)的敏感性。此外,SMARCAL1/HLTF雙缺失下導致RPA32 S4 / S8兩個位點的磷酸化,代表複製叉的斷裂。我們發現在DNA複製壓力下,SMARCAL1和HLTF對維持複製叉的穩定性是具有協同的作用。
DNA replication stress imposes a great threat to the integrity of genome. SMARCAL1 and HLTF DNA translocases are recruited to stalled replication forks to promote fork reversal; therefore, stabilizing forks and preventing the collapse of replication forks. However, whether HLTF and SMARCAL1 function redundantly or they are involved in resolving different type of DNA lesions remains unclear. Here we report that SMARCAL1 plays an important role in fork stability. The depletion of SMARCAL1 generates high frequency of sister chromatid exchanges (SCEs). Strikingly, the single molecule DNA fibre analysis revealed that SMARCAL1 contributes to the slowing of replication progression in response to MMS-induced DNA lesions. The combined depletion of SMARCAL1 and HLTF causes more sensitivity to DNA damaging agent, methyl methanesulfonate (MMS), than the single depletion of each gene. Furthermore, SMARCAL1/HLTF double-depleted cells results in the hyperphosphorylation of RPA32 at S4/S8 sites, indicating the collapse of forks. Our findings reveal that SMARCAL1 and HLTF have additive effects on the maintenance of fork stability during replication stress.
1. Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071–1078 (2009).
2. Giglia-Mari, G., Zotter, A. & Vermeulen, W. DNA damage response. Cold Spring Harb. Perspect. Biol. 3, 1–19 (2011).
3. Shiloh, Y. & Ziv, Y. The ATM protein kinase: Regulating the cellular response to genotoxic stress, and more. Nat. Rev. Mol. Cell Biol. 14, 197–210 (2013).
4. Gaillard, H., García-Muse, T. & Aguilera, A. Replication stress and cancer. Nat. Rev. Cancer 15, 276–280 (2015).
5. Gao, Y., Mutter-Rottmayer, E., Zlatanou, A., Vaziri, C. & Yang, Y. Mechanisms of post-replication DNA repair. Genes 8, (2017).
6. Seo, Y. S. & Kang, Y. H. The human replicative helicase, the CMG complex, as a target for anti-cancer therapy. Frontiers in Molecular Biosciences 5, 1–21 (2018).
7. Mota, M. B. S., Carvalho, M. A., Monteiro, A. N. A. & Mesquita, R. D. DNA damage response and repair in perspective: Aedes aegypti, Drosophila melanogaster and Homo sapiens. Parasites and Vectors 12, 1–20 (2019).
8. Ghosal, G. & Chen, J. DNA damage tolerance: A double-edged sword guarding the genome. Translational Cancer Research 2, 107–129 (2013).
9. Li, Z., Pearlman, A. H. & Hsieh, P. DNA mismatch repair and the DNA damage response. DNA Repair (Amst). 38, 94–101 (2016).
10. Rocha, C. R. R., Silva, M. M., Quinet, A., Cabral-Neto, J. B. & Menck, C. F. M. DNA repair pathways and cisplatin resistance: An intimate relationship. Clinics 73, 1–10 (2018).
11. D’Andrea, A. D. DNA Repair Pathways and Human Cancer. Mol. Basis Cancer Fourth Ed. (2014). doi:10.1016/B978-1-4557-4066-6.00004-4
12. Lundin, C. et al. Methyl methanesulfonate (MMS) produces heat-labile DNA damage but no detectable in vivo DNA double-strand breaks. Nucleic Acids Res. 33, 3799–3811 (2005).
13. Papamichos-Chronakis, M. & Peterson, C. L. Chromatin and the genome integrity network. Nature Reviews Genetics 14, 62–75 (2013).
14. Chang, H. H. Y., Pannunzio, N. R., Adachi, N. & Lieber, M. R. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat. Rev. Mol. Cell Biol. 18, 495–506 (2017).
15. Mao, Z., Bozzella, M., Seluanov, A. & Gorbunova, V. Comparison of nonhomologous end joining and homologous recombination in human cells. DNA Repair (Amst). 7, 1765–1771 (2008).
16. Altmann, T. & Gennery, A. R. DNA ligase IV syndrome ; a review. Orphanet J. Rare Dis. 1–7 (2016). doi:10.1186/s13023-016-0520-1
17. Keka, I. S. et al. Smarcal1 promotes double-strand-break repair by nonhomologous end-joining. Nucleic Acids Res. 43, 6359–6372 (2015).
18. Kolinjivadi, A. M. et al. Moonlighting at replication forks – a new life for homologous recombination proteins BRCA1, BRCA2 and RAD51. FEBS Letters 591, 1083–1100 (2017).
19. Her, J. & Bunting, S. F. How cells ensure correct repair of DNA double-strand breaks. Journal of Biological Chemistry 293, 10502–10511 (2018).
20. Bhat, K. P. & Cortez, D. RPA and RAD51: Fork reversal, fork protection, and genome stability. Nat. Struct. Mol. Biol. 25, 446–453 (2018).
21. Branzei, D. & Foiani, M. Regulation of DNA repair throughout the cell cycle. Nature Reviews Molecular Cell Biology 9, 297–308 (2008).
22. Polo, S. E. & Jackson, S. P. POLO, JACKSON - 2011 - prot reparo. Genes Dev. 25, 409–433 (2011).
23. Quinet, A., Lemaçon, D. & Vindigni, A. Replication Fork Reversal: Players and Guardians. Molecular Cell 68, 830–833 (2017).
24. Repository, Z. O. Mechanistic Insight Into Replication Fork Reversal Under Genotoxic Stress . Dissertation zur. (2016).
25. Zellweger, R. et al. Rad51-mediated replication fork reversal is a global response to genotoxic treatments in human cells. J. Cell Biol. 208, 563–579 (2015).
26. Cortez, D. Replication-Coupled DNA Repair. Molecular Cell 74, 866–876 (2019).
27. Poole, L. A. & Cortez, D. Functions of SMARCAL1, ZRANB3, and HLTF in maintaining genome stability. Crit. Rev. Biochem. Mol. Biol. 52, 696–714 (2017).
28. Ryan, D. P. & Owen-Hughes, T. Snf2-family proteins: Chromatin remodellers for any occasion. Current Opinion in Chemical Biology 15, 649–656 (2011).
29. Pazin, M. J. & Kadonaga, J. T. SWI2/SNF2 and related proteins: ATP-driven motors that disrupt protein- DNA interactions? Cell 88, 737–740 (1997).
30. Flaus, A., Martin, D. M. A., Barton, G. J. & Owen-Hughes, T. Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res. 34, 2887–2905 (2006).
31. Yusufzai, T. & Kadonaga, J. T. HARP is an ATP-driven annealing helicase. Science (80-. ). 322, 748–750 (2008).
32. Postow, L., Woo, E. M., Chait, B. T. & Funabiki, H. Identification of SMARCAL1 as a component of the DNA damage response. J. Biol. Chem. 284, 35951–35961 (2009).
33. Lugli, N., Sotiriou, S. K. & Halazonetis, T. D. The role of SMARCAL1 in replication fork stability and telomere maintenance. DNA Repair (Amst). 56, 129–134 (2017).
34. Couch, F. B. et al. ATR phosphorylates SMARCAL1 to prevent replication fork collapse. Genes Dev. 27, 1610–1623 (2013).
35. Ciccia, A. et al. The SIOD disorder protein SMARCAL1 is and RPA-interacting protein involved in replication fork restart. 2415–2425 (2009). doi:10.1101/gad.1832309.5
36. Bansbach, C. E., Bétous, R., Lovejoy, C. A., Glick, G. G. & Cortez, D. The annealing helicase SMARCAL1 maintains genome integrity at stalled replication forks. Genes Dev. 23, 2405–2414 (2009).
37. Bétous, R. et al. Substrate-Selective Repair and Restart of Replication Forks by DNA Translocases. Cell Rep. 3, 1958–1969 (2013).
38. Bhat, K. P., Bétous, R. & Cortez, D. High-affinity DNA-binding domains of replication protein A (RPA) direct SMARCAL1-dependent replication fork remodeling. J. Biol. Chem. 290, 4110–4117 (2015).
39. Driscoll, R. & Cimprich, K. A. HARPing on about the DNA damage response during replication. Genes Dev. 23, 2359–2365 (2009).
40. Taglialatela, A. et al. Restoration of Replication Fork Stability in BRCA1- and BRCA2-Deficient Cells by Inactivation of SNF2-Family Fork Remodelers. Mol. Cell 68, 414-430.e8 (2017).
41. Kolinjivadi, A. M. et al. Smarcal1-Mediated Fork Reversal Triggers Mre11-Dependent Degradation of Nascent DNA in the Absence of Brca2 and Stable Rad51 Nucleofilaments. Mol. Cell 67, 867-881.e7 (2017).
42. Poole, L. A. et al. SMARCAL1 maintains telomere integrity during DNA replication. Proc. Natl. Acad. Sci. U. S. A. 112, 14864–14869 (2015).
43. Carroll, C. et al. Phosphorylation of a C-terminal auto-inhibitory domain increases SMARCAL1 activity. Nucleic Acids Res. 42, 918–925 (2014).
44. Boerkoel, C. F. et al. Mutant chromatin remodeling protein SMARCAL1 causes Schimke immuno-osseous dysplasia. Nat. Genet. 30, 215–220 (2002).
45. Ubhi, T. & Brown, G. W. Exploiting DNA replication stress for cancer treatment. Cancer Res. 79, 1730–1739 (2019).
46. Cox, K. E., Maréchal, A. & Flynn, R. L. SMARCAL1 Resolves Replication Stress at ALT Telomeres. Cell Rep. 14, 1032–1040 (2016).
47. Rivera Martínez, C. A. 4NQO Carcinogenesis: A Model of Oral Squamous Cell Carcinoma. Int. J. Morphol. 30, 309–314 (2012).
48. Brüsehafer, K. et al. The clastogenicity of 4NQO is cell-type dependent and linked to cytotoxicity, length of exposure and p53 proficiency. Mutagenesis 31, 171–180 (2016).
49. Bétous, R. et al. SMARCAL1 catalyzes fork regression and holliday junction migration to maintain genome stability during DNA replication. Genes Dev. 26, 151–162 (2012).
50. Arnaudeau, C., Lundin, C. & Helleday, T. DNA double-strand breaks associated with replication forks are predominantly repaired by homologous recombination involving an exchange mechanism in mammalian cells. J. Mol. Biol. 307, 1235–1245 (2001).
51. Kile, A. C. et al. HLTF’s Ancient HIRAN Domain Binds 3’ DNA Ends to Drive Replication Fork Reversal. Mol. Cell 58, 1090–1100 (2015).
52. Liaw, H., Lee, D. & Myung, K. DNA-PK-dependent RPA2 hyperphosphorylation facilitates DNA repair and suppresses sister chromatid exchange. PLoS One 6, 1–10 (2011).
53. Sugimura, K., Takebayashi, S. I., Taguchi, H., Takeda, S. & Okumura, K. PARP-1 ensures regulation of replication fork progression by homologous recombination on damaged DNA. J. Cell Biol. 183, 1203–1212 (2008).
54. Berti, M. et al. Human RECQ1 promotes restart of replication forks reversed by DNA topoisomerase I inhibition. Nat. Struct. Mol. Biol. 20, 347–354 (2013).
55. Ashley, A. K. et al. DNA-PK phosphorylation of RPA32 Ser4/Ser8 regulates replication stress checkpoint activation, fork restart, homologous recombination and mitotic catastrophe. DNA Repair (Amst). 21, 131–139 (2014).