簡易檢索 / 詳目顯示

研究生: 羅兆文
Lo, Chao-Wen
論文名稱: 局部互相關系數法在影像點經由幾何轉換後的位置確認研究
Identification Study Upon Geometrical Transformation of Image Point via Local Cross Correlation
指導教授: 鄭育能
Jeng, Y.N.
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 70
中文關鍵詞: 局部互相關系數數位影像二維線性守恆性內插法
外文關鍵詞: Local Cross Correlation, Digital Image, 2D Linear Conservative Interpolation
相關次數: 點閱:55下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文發展一種數位影像在粗細像素之間重建數位影像的理想化模式。將一設定物件做短距離位移後,構建成兩張理想化的數位影像,再從第一張圖之點,計算在第二張圖上各點之局部互相關系數,最後取系數極大時之位置,當作在第二張圖上對應於第一張圖該點之位置。定位誤差是由理論位置和估算位置之差異的距離決定。本文發現下列三種方法可以明顯的降低定位誤差:將灰階值加上最大灰階值之均勻性平移,使用單調性分段三次曲線內插法建立細像素後,進行次像素估算定位,和使用修正型之選擇性Shepard內插法。本文亦討論線性守恆性內插法和LoG濾波器之邊緣線估算法,發現前者可以略為改進定位誤差有時也有助於影像的可視性,而後者則在細像素估算有潛力。本文亦應用到數個車牌影像的實例上,以討論本文的模式實用之可能性。

      An idealized model on re-constructing digital image between coarse and fine pixel image is proposed. The maximum local cross-correction coefficient method is employed to identify the associated point of an digital image with respect to another digital image. The distance between two corresponding points is considered as the displacement between points. As comparing with the exact distance, the identification error can be defined. It is found that the following methods can improve the error on identification: shift the gray level value by an amount approximately equal to the maximum gray level of two images; construct the fine pixel image via the monotonic cubic spline interpolation to perform the fine grid identification; and employs a modified Shepard interpolation to perform selected interpolation which excludes all points with an extra- ordinary displacement. The linear conservative interpolation method is examined and is found to have a small effect of improving identification error because the proposed method of calculating the gray level gradient is improper. Sometimes, it is helpful to improve image visibility. The LoG filter is found to have potential to improve the estimation of edge image line in the fine grid calculation. Several motor plate images were employed to test the applicability of the proposed model.

    中文摘要……………………………………………………………… Ⅰ 英文摘要……………………………………………………………… Ⅱ 誌謝…………………………………………………………………… Ⅲ 目錄…………………………………………………………………… Ⅳ 圖目錄………………………………………………………………… Ⅵ 符號說明…………………………………………………………… ⅩⅢ 第一章 緒論 1.1研究動機………………………………………………………… 1 1.2研究目的………………………………………………………… 2 1.3文獻回顧………………………………………………………… 3 1.4實驗簡介………………………………………………………… 5 第二章 理論分析 2.1理想化的粗細像素數位影像處理模式………………………… 12 2.2修正型之單調變化三次曲線內插法…………………………… 15 2.3二維線性守恆性內插法………………………………………… 17 2.4 LoG濾波器式的邊緣線預估法結果與討論…………………… 22 2.5修正型Shepard選擇性內插法………………………………… 24 2.6局部互相關系數和定位………………………………………… 25 第三章 結果與討論 3.1二維sine波函數圖……………………………………………… 27 3.2 數字與車牌號碼圖……………………………………………… 33 第四章 結論與未來工作 4.1結論……………………………………………………………… 37 4.2未來工作………………………………………………………… 38 結果附圖……………………………………………………………… 39 參考文獻……………………………………………………………… 67 自述…………………………………………………………………… 69 著作權聲明…………………………………………………………… 70

    1. Gonzalez , R. C. and Woods, R. E., Digital Image Processing, 2nd ed., Pearson Education, Inc., 2002.

    2. 楊新明,“會聲會影5-影片剪輯輕鬆上手”,2001年6月

    3. 黃鵬修,“影音光碟夢工場”,2002

    4. 鄧文淵, “數位照片處理與光碟製作”,2003

    5. 李振輝 and 李仁和,“探索影像檔案的奧妙”,1995

    6. 訊連科技,“威力導演使用手冊”

    7. 吳權威,“PHOTOIMPACT 6”,2000

    8. Hyunk, H. T.“Accurate Monotone Cubic Interpolation,” SIAM J. Number. Anal. vol.30, no.1, pp57-100, Feb.1993.

    9. Berger, M. J., “On Conservation at Grid Interfaces,” SIAM J. Numer. Anal., vol.24, pp.967-984, 1987.

    10. Dukowicz, J. K., “Conservative Rezoning (Remapping) for General Quadrilateral Meshes,” J. Comp. Physics, vol.54, pp.411-424, 1984.

    11. Moon, Y. J., and M. S. Liou, “Conservative Treatment of Boundary Interfaces for Overlaid Grids and Multi-level Grid Applications,” AAIA paper 89-1980-CP, June 1989.

    12.李鐘孝,”二維自調性格點產生法及守恒性內插法之研究,”國立成功大學航空太空工程學系博士論文,March 2001。

    13. Marr, D. and E.C. Hildreth. “Theory of Edge Detection,” Proc. Roy. Soc. London., B-207:187-217, 1980.

    14. Witkin, A. P., “Scale-space filtering,” In Proc. IJCAI 1983, pages 1019-1021, 1983.

    15. Shann, R.T.m and J.P. Oakley., “Novel approach to boundary finding. Image and Vision Computing,’ vol.8 no.1, pp.32-36, February 1990.

    16. D. Shepard, “A two-dimensional interpolation function for irregularly- spaced data”.23rd National Conference of ACM, 1968, pp.517.

    17. Devore, J. L. Probability and Statistics for Engineering and the Sciences, 5th ed. Duxbury Thomson Learning, Austrlia, 2000.

    18. Bendat, J. S. and Piersol, A. G., Random Data Analysis and Measurement Procedures, 3rd ed. John Wiley & Sons, New York, 2000.

    19. Silverman, B. W., Density Estimation for Statistics and Data Analysis, Chapman and Hall, London, 1986.

    20. Press, W. H.; Flannery, B. R.; Teukolsky, S. A.; and Vetterling, W. T., Numerical Recipes in C, the Art of Scientific Computing, Chapter 14, Cambridge University Press, Cambridge, New York, 1988.

    21. Jeng, Y. N., “The First Study upon Local Correlation Functions,” 2002 CIROC CSCA AASRC Joint Conference, Fluid and Aerodynamic section pp.1-8, no.FA-10, March 2002.

    22.Fritsch, F. N. and R. E. Carlson, “Monotone Piecewise Cubic Interpolation, ” SIAM Numer. Analy. Vol.17, pp.238-246, 1980.

    23.de Boor and B. Swartz, “Piecewise Monotone Interpolation,” J. Approx. Theory, vol.21, pp.411- 416, 1977.

    24.Jeng, Y. N. and Y. C. Cheng, “A Simple Strategy to Evaluate the Frequency Spectrum of a Time Series Data with Non-Uniform Intervals,” The 10th National Computational Fluid Dynamics Conference, Hua-Lien, Aug. 2003, Paper no. A-9.

    下載圖示 校內:立即公開
    校外:2004-08-11公開
    QR CODE