| 研究生: |
廖秀曼 Liao, Siou-Mann |
|---|---|
| 論文名稱: |
銪離子於(鈣、鍶)磷矽酸鹽玻璃中的螢光性質及其與基質結構特性之關連性研究 Fluorescence of Eu3+ in (Ca, Sr) phosphosilicate glasses and its correlation with the structural properties of hosts |
| 指導教授: |
吳毓純
Wu, Yu-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 磷矽酸鹽 、螢光 、銪 、鈣 、鍶 |
| 外文關鍵詞: | phosphosilicate, fluorescence, glasses, Eu3+, Sr2+, Ca2+ |
| 相關次數: | 點閱:94 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討Eu離子在磷矽玻璃中的螢光性質,以及其與基質結構的關連性。採用溶膠凝膠法製備樣品,藉由改變玻璃網路成分,觀察基質結構的變化對Eu離子螢光表現的影響。
本研究的第一部分為固定Al離子添加量之鋁磷矽(APS)系統,由前人研究發現Al離子以修飾劑AlO6存在時,有助於Eu離子的分散與自發還原。故在此藉由調整P/Si比例,由NMR觀察Al離子與P離子之配位變化情形,及其對Eu離子螢光表現的影響。
而本研究第二部份為磷矽酸鹽(PS)系統的探討,利用P/Si比例的不同,分析相組成與P離子配位結構之關係,並綜合螢光衰退曲線結果,發現Eu3+螢光效率與Si5P6O25結晶相的生成呈正相關。而在磷矽系統中額外加入定量Ca、Sr離子之鹼土磷矽酸鹽(MPS),則發現修飾劑的加入會使P離子產生去聚合效應,使[PO4]四面體產生橋氧與非橋氧數量上的變動,影響了Eu離子的分布與螢光表現。
為了更確切的觀察修飾劑離子對磷矽基質結構的影響,在固定P/Si比的情況下,摻雜不同濃度的Ca2+或Sr2+,結果發現兩系列有完全不同之趨勢。Ca系列中,焦磷酸鈣(Ca2P2O7)結晶相生成的比例與紅光強度呈正相關,顯示Eu離子與焦磷酸鈣結構的相容性高,可順利進入此相中並表現良好的螢光效率。而在Sr系列表現較複雜,Eu離子傾向分散在磷矽玻璃基質中,隨著聚磷酸鍶晶相的生成,螢光效率反而降低。
本研究亦透過還原氣氛熱處理使Eu3+還原成Eu2+,藉Eu2+之易受環境影響的特性,確認基質環境與Eu離子螢光效率之關聯性。由藍光特性分析,進一步確認Eu離子在鍶磷矽系統中的分佈與結構的關聯性。
Phosphosilicate glasses exhibit good transparency in visible range but also a good compatibility with rare earth ions that is considered as a good candidate as rare earth ions doped fluorescent glasses. In this work, Eu3+ was selected as active ions to yield good optical rendering red emission. Glass compositions were modified by varying the ratios of the glass former, i.e. P and Si, and the glass modifier, i.e. Sr2+, Ca2+. Various compositions of (Ca, Sr) phosphosilicate materials have been prepared via sol-gel processes. The as-prepared xerogels were annealed at 1000ºC for 2 h under air atmosphere. Correlation between the structural properties of host glasses and the fluorescent properties of Eu3+ were been investigated.
According to the experimental investigations, the amount of phosphor strongly altered the structure of the host glasses and as a consequence resulted in very different fluorescent properties. In phosphosilicate system, the emission intensity of Eu3+ obviously increased when Si5P6O25 crystallized phase was formed. It implied that Eu3+ prefers to bond with phosphor and the ionic distribution was improved to avoid the cluster quenching effect. Furthermore, the addition of network modifier ions (M = Ca, Sr) allows a formation of P-O-M-O-Eu bonding and resulted in an increase of emission intensities. The same tendency was observed whether Eu3+ in glass matrix (Si-phosphosilicate) or crystallization (Ca-phosphosilicate). Eu3+ doped Sr2+ or Ca2+ phosphosilicate is considered as a potential candidate for panel and monitor phosphor applications.
[1] 楊素華, “螢光粉在發光上的應用”, 科學發展, 358, 66-71 (2002).
[2] J. M. Eder and E. Valenta, “Absorption Spectra of Colorless and Colored Glasses”, Denkschrift der Mathem Naturw. Klasses, Akad. Wiss. Wien, 61, 285-95 (1894).
[3] V. C. Costa, M. J. Lochhead, K. L. Bray, “Fluorescence Line-Narrowing Study of Eu3+-Doped Sol-Gel Silica: Effect of Modifying Cations on the Clustering of Eu3+”, Chem. Mater., 8, 783-790 (1996).
[4] 潘瑋, “銪離子於摻雜 (Mg、Ca、Sr)離子之鋁矽玻璃基質中的自發還原行為探討”, 國立成功大學資源工程學系碩士論文, 2012.
[5] 陳衡勳, “鹼土離子對於銪在硼矽酸鹽基質中自發還原現象及螢光性質之研究”, 國立成功大學資源工程學系碩士論文, 2013.
[6] “Fluorescence microscopy - a brief explanation”, http://www.scienceinyoureyes.com/index.php?id=79, (2008).
[7] “Jablonski Energy Diagram”, http://www.olympusmicro.com/primer/java/jablonski/jabintro, (2012).
[8] J .G. Sole, L. E. Bausa, D. Jaque, “An Introduction to Optical Spectroscopy of Inorganic Solids”, John Wiely &Sons, 2005.
[9] B. Henderson, G. F. Imbusch, “Optical Spectroscopy of Inorganic Solids”, Oxford University Press, 2006.
[10] J. Snider, “Fluorescent Probes”, http://www.piercenet.com/method/fluorescent-probes, (2014)
[11] B. Wardle, “Principles and applications of photochemistry”, John Wiley & Sons, 2009.
[12] 呂紹旭, “LED市場與產業應用暨標準發展年鑑”, 臺北市, 光電協進會, 2012.
[13] 王筱姍, 陳韋廷, 劉如熹, “發光二極體用之螢光粉熱特性探討”, 光連: 光電產業與技術情報, 105, 70-74 (2013).
[14] 蘇鏘, “稀土元素”, 北京, 清華大學出版社, 2000.
[15] 黃妙伃, “銪矽酸鹽化合物之合成、結構鑑定與發光性質研究”, 國立中央大學化學研究所碩士論文, 2006.
[16] 姜中宏 主編, “新型光功能玻璃”, 北京, 化學工業出版社, 2008.
[17] A. Baran, S. Mahlik, M. Grinberg, E. Zych, “High pressure and time-resolved luminescence spectra of Ca3Y2(SiO4)3 doped with Eu2+ and Eu3+”, J. Phys.: Condens. Matte, 25, 025603 (2013).
[18] G. Huber, K. Syassen, W. B. Holzapfel, “Pressure dependence of 4f levels in europium pentaphosphate up to 400 kbar”, Phys. Rev. B, 15, 5123-5128 (1977).
[19] B. R. Judd, “Optical Absorption Intensities of Rare-Earth Ions”, Phys. Rev., 127, 750-761 (1962).
[20] G. S. Ofelt, “Intensities of Crystal Spectra of Rare‐Earth Ions”, J. Chem. Phys., 37, 511-520 (1962).
[21] S. Shionoya, W. M. Yen (Eds.), “Phosphor Handbook”, New York, CRC Press, 1999.
[22] B. E. Douglas, D. H. McDaniel and J. J. Alexander, “Concepts and models of Inorganic Chemistry-3rd”, New York, John Wiley & Sons, 1994.
[23] A.H. Kitai, ed. “Solid state luminescence: theory, materials, and devices”, London, Chapman and Hall, 1993.
[24] G. Blasse, B. C. Grabmaier, “Luminescent Materials”, Berlin, Springer-Verlag, 1994.
[25] K. Fajans, “Struktur und Deformation der Elektronenhüllen in ihrer Bedeutung für die chemischen und optischen Eigenschaften anorganischer Verbindungen”, Naturwiss., 11, 165-172 (1923).
[26] C. H. Park, T. H. Kim, Y. Yonesaki, N. Kumada, “A re-investigation of the crystal structure and luminescence of BaCa2MgSi2O8:Eu2+”, J. Solid State Chem., 184, 1566-1570 (2011).
[27] F. Clabau, A. Garcia, P. Bonville, D. Gonbeau, T. L. Mercier, P. Deniard, S. Jobic, “Fluorescence and phosphorescence properties of the low temperature forms of the MAl2Si2O8:Eu2+ (M=Ca, Sr, Ba) compounds”, J. Solid State Chem., 181, 1456-1461 (2008).
[28] J. S. Kim, Y. H. Park, S. M. Kim, J. C. Choi, H. L. Park, “Temperature-dependent emission spectra of M2SiO4:Eu2+ (M=Ca, Sr, Ba) phosphors for green and greenish white LEDs”, Solid State Commun., 133, 445-448 (2005).
[29] M. Nogami, K. Watanabe, Y. Ito, H. Ito, “Hydrogen Gas Reaction with Eu3+-Doped Al2O3–SiO2 Glasses”, J. Am. Ceram. Soc., 93, 1663-1667 (2010).
[30] S. J. Dhoble, “Preparation and characterization of the Sr5(PO4)3Cl:Eu2+ phosphor”, J. Phys. D: Appl. Phys., 33, 158-161 (2000).
[31] J. Lü, Y. Huang, L. Shi, H. J. Seo, “The luminescence properties of Eu2+ doped Na2CaMg(PO4)2 phosphor”, Appl. Phys. A, 99, 589-863 (2010).
[32] X. Wang, F. Du, D. Wei, Y. Huang, H. J. Seo, “The Blue-Emitting Phosphor of Eu2+-Doped Ca2Sr(PO4)2”, J. Electrochem. Soc., 158, J264-J268 (2011).
[33] C. H. Huang, T. M. Chen, “Novel Yellow-Emitting Sr8MgLn(PO4)7: Eu2+ (Ln = Y, La) Phosphors for Applications in White LEDs with Excellent Color Rendering Index”, Inorg. Chem., 50, 5725-5730 (2011).
[34] Y. Huang, H. Ding, K. Jang, E. Cho,H. S. Lee, M. Jayasimhadri, S. S. Yi, “Luminescence properties of triple phosphate Ca8MgGd(PO4)7 :Eu2+ for white light-emitting diodes”, J. Phys. D: Appl. Phys., 41, 095110 (2008).
[35] W.Chen, R. Sammynaiken, and Y. Huang, “Photoluminescence and photostimulated luminescence of Tb3+ and Eu3+ in zeolite-Y”, J. Appl. Phys., 88, 1424-1431 (2000).
[36] M. Nogami, Y. Abe, “Properties of sol-gel derived Al2O3 -SiO2 glasses using Eu3+ ion fluorescence spectra”, J. Non-Cryst. Solids., 197, 73-78 (1996).
[37] Z. Pei, Q. Su, “The valence change from RE3+ to RE2+ (RE = Eu, Sm, Yb) in SrB407: RE prepared in air and the spectral properties of RE2+ ”, J. Alloys Compd., 198, 51-53 (1993).
[38] Z. W. Pei, Q. H. Zeng and Q. Su, “The application and a substitution defect model for Eu3+→Eu2+ reduction in non-reducing atmospheres in borates containing BO4 anion groups”, J. Phys. Chem., 61, 9-12 (2000).
[39] Z. H. Lian, et al. “Reduction of Eu3+ in air and luminescence properties of Eu2+ activated baric borophosphate glasses”, Chinese J. Inorg. Chem., 24, 398-402 (2008).
[40] W. H. Zachariasen, “The atomic arrangement in glass”, J. Am. Chem. Soc., 54, 3841-3851 (1932).
[41] A. Dietzel, “The cation field strengths and their relation to devitrifying
processes, to compound formation and to the melting points of silicates”, Z. Elektrochem., 48, 9-23 (1942).
[42] 楊希文, “玻璃的藝術與科技:螢光玻璃”, 科學發展, 406, 14-19 2006.
[43] 江志均, “掺雜稀土離子對玻璃的微觀結構與發光性質的影響”, 大同大學材料工程研究所博士論文, 2010.
[44] D. R. Neuville, L. Cormier, D. Massiot, “Al coordination and speciation in calcium aluminosilicate glasses: Effects of composition determined by 27Al MQ-MAS NMR and Raman spectroscopy”, Chem. Geol., 229, 173-185 (2006).
[45] R. H. Doremus, “Glass Science”, New York, John Wiley & Sons, 1973.
[46] J. M. Eder, E. Valenta, “Absorption Spectra of Colorless and Colored Glasses”, 61, 285-295 (1894).
[47] W. Holand, G. H. Beall, “Glass Ceramic Technology”, John Wiley & Sons, 2012.
[48] R. K. Brow, “Review: the Structure of Simple Phosphate Glasses”, J. Non-Cryst. Solids, 263&264, 1-28 (2000).
[49] Y. B. Peng, D.E. Day, “High Thermal Expansion Phosphate Glasses. Part 1”, Glass Techol., 32, 166-173 (1991).
[50] U. Hoppe, “A Structure Model for Phosphate Glasses”, J. Non-Cryst. Solids, 274, 138-147 (1996).
[51] K. Meyer, A. Barz, D. Stachel, “A Model of the Structure of Simple
Phosphate Glasses”, Phys. Chem. Glasses, 43, 108-118 (2002).
[52] S.G. Kosinski, D.M. Krol, T.M. Duncan, D.C. Douglass, J.B. MacChesney, J.R. Simpson,”Raman and NMR spectroscopy of SiO2 glasses CO-doped with Al2O3 and P 2O5”, J. Non-Cryst. Solids, 105, 45-52 (1988).
[53] D.C. Douglass, T.M. Duncan, K.L. Walker, R. Csencsits, “A study of phosphorus in silicate glass with 31P nuclear magnetic resonance spectroscopy”, J. Appl. Phys., 58,197-203 (1985).
[54] K. Tajima, M. Ohashi, K. Shiraki, M. Tateda, S. Shibata, “Low Rayleigh Scattering P2O5-F-SiO2 Glasses”, J. Lightwave Technol., 10, 1532-1535 (1992).
[55] R. Kashyap, “Photosensitive Optical Fibers: Devices and Applications”, Opt. Fiber Technol., 1, 17-34 (1994).
[56] E. M. Dianov, M. V. Grekov, I. A. Bufetov, S. A. Vasiliev, O. I. Medvedkov, V. G. Plotnichenko, V. V. Koltashev, A. V. Belov, M. M. Bubnov, S. L. Semjonov, A. M. Prokhorov, “CW high power 1.24 um and 1.48um Raman lasers based on low loss phosphosilicate fibre”, Electron. Lett., 33, 1542-1544 (1997).
[57] E. M. Dianov, I. A. Bufetov, M. M. Bubnov, M. V. Grekov, S. A. Vasiliev, O. I. Medvedkov, “Three-cascaded 1407-nm Raman laser based on phosphorus-doped silica fiber”, Opt. Lett., 25, 402-404 (2000).
[58] S. G. Grubb, P. Gannon, “Proceedings of the Conference on Optical Fibers Communications”, OSA Technical Digest Series, Washington, D.C., 4, PD7 (1991).
[59] E. M. Dianov, M. M. Bubnov, A. N. Gurianov, V. F. Hopin, E. B. Kryukova, V. G. Plotnichenko, A. A. Rybaltovskii, V. O. Sokolov, European Conference on Optical Communications (ECOC 2000), 3, 135 (2000).
[60] F. Tian, L. Pan, X. Wu, F. Wu, “The NMR studies of the P2O5-SiO2 sol and gel chemistry”, J. Non-Cryst. Solids, 104, 129-134 (1988).
[61] T. L. Weeding, B. H. W. S. de Jong, W. S. Veeman, B. G. Aitken, “Silicon coordination changes from 4-fold to 6-fold on devitrification of silicon phosphate glass”, Nature ,318, 352-353 (1985).
[62] E. Tillmanns, W. Gebert, “Computer simulation of crystal structures applied to the solution of the superstructure of cubic silicondiphosphate”, J. Solid State Chem., 7, 69-84 (1973).
[63] “Performance Assessment For Alkali Silica Reaction”, http://homepage.tudelft.nl/n89v3/Page4.html, (2013).
[64] J. Jin, S. Sakida, T. Yoko and M. Nogami, “The local structure of Sm-doped aluminosilicate glasses prepared by sol-gel method”, J. Non-Cryst. Solids, 262, 183-190 (2000).
[65] V. C. Costa, M. J. Lochhead, K. L. Bray, “Fluorescence Line-Narrowing Study of Eu3+-Doped Sol−Gel Silica: Effect of Modifying Cations on the Clustering of Eu3+”, Chem. Mater., 8, 783-790 (1996).
[66] Y. C. Zhang, W. D. Cheng, D. S. Wu, H. Zhang, D. G. Chen, Y. J. Gong, Z. G. Kan, “Crystal structure and energy band and optical properties of phosphate Sr3P4O13”, J. Solid State Chem., 177, 2610-2616 (2004).
[67] D. Hou, B. Han, W. Chen, H. Liang, Q. Su, P. Dorenbos, Y. Huang, Z. Gao, Y. Tao, “Luminescence of Ce3+ at two different sites in α-Sr2P2O7 under vacuum ultraviolet-UV and x-ray excitation.” J. Appl. Phys., 108, 083527 (2010).