| 研究生: |
江建廷 Jiang, Jian-Ting |
|---|---|
| 論文名稱: |
PCA基質對於蘭嶼豬脛骨缺損之骨再生研究 Bone regeneration study of PCA matrix on tibial bone defect of Lanyu pig |
| 指導教授: |
黃玲惠
Huang, Ling-Huei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技與產業科學系 Department of Biotechnology and Bioindustry Sciences |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | 膠原蛋白 、碳酸基磷灰石 、骨缺損 、蘭嶼豬 |
| 外文關鍵詞: | collagen, carbonate apatite, bone defects, Lanyu pig |
| 相關次數: | 點閱:102 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
臨床上嚴重之骨缺損5-10%會延遲癒合或不癒合。目前主要治療方式為自體骨移植,但是受限於骨組織來源與取骨部位之傷害,因此替代骨組織之骨移植材料開始蓬勃發展,結合支架、細胞、訊號因子之組織工程材料即為其中之一。先前研究證實膠原蛋白有良好生物相容性促進骨癒合,碳酸基磷灰石接近骨組織礦物之成分常被用於骨移植替代物,因此我們實驗室開發含有膠原蛋白與碳酸基磷灰石之PCA基質,經乾燥形成PCA支架植入蘭嶼豬脛骨缺損模型探討PCA基質對於骨缺損之作用。首先確認支架材料特性,FT-IR圖譜顯示PCA支架存在碳酸基磷灰石之碳酸根與磷酸根與膠原蛋白主要官能基;膨潤度測試結果顯示支架PCA 2與PCA 3較PCA 1有幫助骨缺損癒合之較佳吸水性;ICP-MS元素分析結果顯示不同PCA支架鈣磷含量具些微差異。動物試驗由Micro-CT分析結果,使用不治療組動物試驗評估骨缺損癒合之不同觀察時間點(術後第六、第八週),術後第八週骨缺損之癒合已達到正常骨組織體積之80%,術後第六週約達到正常骨組織體積之60%,為有效了解植入物在促進骨缺損癒合的效果,因此選擇術後第六週作為適當的觀察時間點。PCA支架植入蘭嶼豬脛骨缺損中,結果顯示碳酸基磷灰石之組別有促進骨組織再生之效果,但詳細機轉需要更進一步之研究。
Bone defects can be caused by several conditions (like major trauma) and brought inconveniency to the patients’ lives. However, traditional treatments such as autograft transplantation has the problems like bone source limitation and so on. In this regard, tissue engineering combining biomaterial scaffolds with growth factors or stem cells may strategically solve the above issue. Previous studies have suggested that collagen matrix is a well-biocompatible material while carbonate apatite enable acceleration of bone defect healing. Therefore, we develop PCA matrix consisting of these two materials, prepare the PCA scaffold by drying the PCA matrix and assess its efficacy using the Lanyu pig bone defect model. The material characterization assessment of the scaffolds with stoichiometric differences suggested Fourier-transform infrared spectroscopy(FTIR) qualitatively demonstrate the presence of synthetic carbonate apatite inside the PCA matrix. Inductively coupled plasma-mass spectroscopy (ICP-MS) elemental analysis suggested PCA scaffolds have minor difference in the amounts of Ca and P. The swelling test yield that PCA 2 and PCA 3 scaffolds have better ability of water absorption than PCA 1 to help bone defect healing. Micro-CT analysis evaluated effects of tibial bone defects regeneration. Before transplantation, we determined the most suitable observation time point of treatments. Regarding the self-healing of the untreated pigs, the pig at 6-weeks post-surgery showed less apparent bone defect recovery comparing to the one at 8-weeks post-surgery, suggesting that “6-weeks-post-surgery” be an appropriate observation time point for measuring the therapeutic efficacy of PCA scaffold treatments. At this time point, the PCA scaffolds treatment led to tibia bone defect regeneration in a superior manner, while comparing to the untreated control. In conclusion, our study suggests that the scaffolds with carbonate apatite have the potential to enhance new bone formation. Thus, optimization of the PCA matrixes generation processes may shed light on the treatment of bone defects.
參考文獻
王怡晴,BM基質於兔子頭骨缺損之作用,國立成功大學生物科技與產業科學所碩士論文,2018。
林倩如,氫氧基磷灰石/膠原蛋白/透明質酸複合微粒對於間葉幹細胞骨分化之影響,國立成功大學生物科技研究所碩士論文,2009。
梁致文,蘭嶼豬糖尿病模式建立與傷口癒合研究,國立成功大學生物科技研究所碩士論文,2017。
陳怡菁,氫氧基磷灰石含量及EDC濃度對於多孔性膠原蛋白/氫氧基磷灰石複合支架其微細結構及生物相容性之影響,國立中興大學動物科學系碩士論文,2014。
Abdulghani, S., and Mitchell, G.R. Biomaterials for in situ tissue regeneration: a review. Biomolecules 9, 24, 2019.
Amini, A.R., Laurencin, C.T., and Nukavarapu, S.P. Bone tissue engineering: recent advances and challenges. Critical Reviews in Biomedical Engineering 40, 363-408, 2012.
Ashman, O., and Phillips, A.M. Treatment of non-unions with bone defects: Which option and why? Injury-International Journal of the Care of the Injured 44, S43-S45, 2013.
Ayukawa, Y., Suzuki, Y., Tsuru, K., Koyano, K., and Ishikawa, K. Histological comparison in rats between carbonate apatite fabricated from gypsum and sintered hydroxyapatite on bone remodeling. Biomed Research International 2015, 2015.
Böstman, O. Absorbable implants for the fixation of fractures. Journal of Bone and Joint Surgery 73, 148-153, 1991.
Bahney, C.S., Zondervan, R.L., Allison, P., Theologis, A., Ashley, J.W., Ahn, J., Miclau, T., Marcucio, R.S., and Hankenson, K.D. Cellular biology of fracture healing. Journal of Orthopaedic Research 37, 35-50, 2019.
Bak, B., and Jensen, K.S. Standardization of tibial fractures in the rat. Bone 13, 289-295, 1992.
Bedi, A., Fox, A.J.S., Harris, P.E., Deng, X.H., Ying, L.A., Warren, R.F., and Rodeo, S.A. Diabetes mellitus impairs tendon-bone healing after rotator cuff repair. Journal of Shoulder and Elbow Surgery 19, 978-988, 2010.
Boerckel, J.D., Kolambkar, Y.M., Stevens, H.Y., Lin, A.S.P., Dupont, K.M., and Guldberg, R.E. Effects of in vivo mechanical loading on large bone defect regeneration. Journal of Orthopaedic Research 30, 1067-1075, 2012.
Bohner, M. Resorbable biomaterials as bone graft substitutes. Materials Today 13, 24-30, 2010.
Braune, B.M., Hobson, K.A., and Malone, B.J. Regional differences in collagen stable isotope and tissue trace element profiles in populations of long-tailed duck breeding in the Canadian Arctic. Science of the Total Environment 346, 156-168, 2005.
Brodsky, B., and Ramshaw, J.A.M. The collagen triple-helix structure. Matrix Biology 15, 545-554, 1997.
Cadosch, D., Chan, E., Gautschi, O.P., and Filgueira, L. Metal is not inert: role of metal ions released by biocorrosion in aseptic loosening-Current concepts. Journal of Biomedical Materials Research Part A 91, 1252-1262, 2009.
Calori, G., Mazza, E., Colombo, M., and Ripamonti, C. The use of bone-graft substitutes in large bone defects: any specific needs? Injury 42, S56-S63, 2011.
Castro, W., Hoogewerff, J., Latkoczy, C., and Almirall, J.R. Application of laser ablation (LA-ICP-SF-MS) for the elemental analysis of bone and teeth samples for discrimination purposes. Forensic Science International 195, 17-27, 2010.
Chen, P.Y., Hsieh, H.J., and Huang, L.L.H. Shrinking mechanism of a porous collagen matrix immersed in solution. Journal of Biomedical Materials Research Part A 102, 4581-4589, 2014.
Cima, L.G., Vacanti, J.P., Vacanti, C., Ingber, D., Mooney, D., and Langer, R. Tissue engineering by cell transplantation using degradable polymer substrates. Journal of Biomechanical Engineering-Transactions of the Asme 113, 143-151, 1991.
Dahabreh, Z., Calori, G., Kanakaris, N., Nikolaou, V., and Giannoudis, P. A cost analysis of treatment of tibial fracture nonunion by bone grafting or bone morphogenetic protein-7. International Orthopaedics 33, 1407, 2009.
Deijkers, R., Bloem, R., Petit, P., Brand, R., Vehmeyer, S., and Veen, M. Contamination of bone allografts: analysis of incidence and predisposing factors. Journal of Bone and Joint Surgery-British Volume 79, 161-166, 1997.
DeLacure, M.D. Physiology of bone healing and bone grafts. Otolaryngologic Clinics of North America 27, 859-874, 1994.
Dimitriou, R., Tsiridis, E., and Giannoudis, P.V. Current concepts of molecular aspects of bone healing. Injury-International Journal of the Care of the Injured 36, 1392-1404, 2005.
Doremus, R. Bioceramics. Journal of Materials Science 27, 285-297, 1992.
Dorozhkin, S.V., and Epple, M. Biological and medical significance of calcium phosphates. Angewandte Chemie International Edition 41, 3130-3146, 2002.
Ducheyne, P., Hench, L., Kagan, A.d., Martens, M., Bursens, A., and Mulier, J. Effect of hydroxyapatite impregnation on skeletal bonding of porous coated implants. Journal of Biomedical Materials Research 14, 225-237, 1980.
Edwards, C.C., Simmons, S., Browner, B., and Weigel, M. Severe open tibial fractures. Results treating 202 injuries with external fixation. Clinical Orthopaedics and Related Research 230, 98-115, 1988.
Einhorn, T.A. The science of fracture healing. Journal of Orthopaedic Trauma 19, S4-S6, 2005.
Einhorn, T.A., and Gerstenfeld, L.C. Fracture healing: mechanisms and interventions. Nature Reviews Rheumatology 11, 45-54, 2015.
Elias, C.N., Lima, J.H.C., Valiev, R., and Meyers, M.A. Biomedical applications of titanium and its alloys. JOM 60, 46-49, 2008.
Eppley, B.L., Pietrzak, W.S., and Blanton, M.W. Allograft and alloplastic bone substitutes: a review of science and technology for the craniomaxillofacial surgeon. Journal of Craniofacial Surgery 16, 981-989, 2005.
Ferreira, A.M., Gentile, P., Chiono, V., and Ciardelli, G. Collagen for bone tissue regeneration. Acta Biomaterialia 8, 3191-3200, 2012.
Florencio, S.R., Sasso, G.R., Sasso-Cerri, E., Simoes, M.J., and Cerri, P.S. Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Research International 2015, 17, 2015.
Fratzl, P. Cellulose and collagen: from fibres to tissues. Current Opinion in Colloid and Interface Science 8, 32-39, 2003.
Ganesh, V.K., Ramakrishna, K., and Ghista, D.N. Biomechanics of bone-fracture fixation by stiffness-graded plates in comparison with stainless-steel plates. Biomedical Engineering Online 4, 15, 2005.
Ge, Z.G., Baguenard, S., Lim, L.Y., Wee, A., and Khor, E. Hydroxyapatite-chitin materials as potential tissue engineered bone substitutes. Biomaterials 25, 1049-1058, 2004.
Gelse, K., Poschl, E., and Aigner, T. Collagens-structure, function, and biosynthesis. Advanced Drug Delivery Reviews 55, 1531-1546, 2003.
Giannoudis, P.V., Dinopoulos, H., and Tsiridis, E. Bone substitutes: an update. Injury-International Journal of the Care of the Injured 36, 20-27, 2005.
Gisep, A. Research on ceramic bone substitutes: current status. Injury 33, 88-92, 2002.
Guillemot, F. Recent advances in the design of titanium alloys for orthopedic applications. Expert Review of Medical Devices 2, 741-748, 2005.
Guirado, J.L.C., Fernandez, M.P.R., Negri, B., Ruiz, R.A.D., de-Val, J., and Gomez-Moreno, G. Experimental model of bone response to collagenized xenografts of porcine origin (OsteoBiol(R) mp3): a radiological and histomorphometric study. Clinical Implant Dentistry and Related Research 15, 143-151, 2013.
Hakimi, M., Jungbluth, P., Sager, M., Betsch, M., Herten, M., Becker, J., Windolf, J., and Wild, M. Combined use of platelet-rich plasma and autologous bone grafts in the treatment of long bone defects in mini-pigs. Injury-International Journal of the Care of the Injured 41, 717-723, 2010.
Henkel, J., Woodruff, M.A., Epari, D.R., Steck, R., Glatt, V., Dickinson, I.C., Choong, P.F.M., Schuetz, M.A., and Hutmacher, D.W. Bone regeneration based on tissue engineering conceptions-A 21st century perspective. Bone Research 1, 216-248, 2013.
Ho, S.T., and Hutmacher, D.W. A comparison of micro CT with other techniques used in the characterization of scaffolds. Biomaterials 27, 1362-1376, 2006.
Hollinger, J.O., and Kleinschmidt, J.C. The critical size defect as an experimental model to test bone repair materials. Journal of Craniofacial Surgery 1, 60-68, 1990.
Hutmacher, D.W. Scaffolds in tissue engineering bone and cartilage. Biomaterials 21, 2529-2543, 2000.
Ibara, A., Miyaji, H., Fugetsu, B., Nishida, E., Takita, H., Tanaka, S., Sugaya, T., and Kawanami, M. Osteoconductivity and biodegradability of collagen scaffold coated with nano-β-TCP and fibroblast growth factor 2. Journal of Nanomaterials 2013, 46, 2013.
Ildefonse, P., and Morin, G. Chemical and structural changes in Cervus elaphus tooth enamels during fossilization (Lazaret cave): a combined IR and XRD Rietveld analysis. Applied Geochemistry 10, 145-159, 1995.
Ishikawa, K. Bone substitute fabrication based on dissolution-precipitation reactions. Materials 3, 1138-1155, 2010.
Ishizawa, H., and Ogino, M. Characterization of thin hydroxyapatite layers formed on anodic titanium oxide films containing Ca and P by hydrothermal treatment. Journal of Biomedical Materials Research 29, 1071-1079, 1995a.
Ishizawa, H., and Ogino, M. Formation and characterization of anodic titanium oxide films containing Ca and P. Journal of Biomedical Materials Research 29, 65-72, 1995b.
Itoh, S., Kikuchi, M., Takakuda, K., Koyama, Y., Matsumoto, H.N., Ichinose, S., Tanaka, J., Kawauchi, T., and Shinomiya, K. The biocompatibility and osteoconductive activity of a novel hydroxyapatite/collagen composite biomaterial, and its function as a carrier of rhBMP-2. Journal of Biomedical Materials Research 54, 445-453, 2001.
Kadler, K. Extracellular matrix. 1: fibril-forming collagens. Protein Profile 1, 519, 1994.
Kalfas, I.H. Principles of bone healing. Neurosurgical Focus 10, 1-4, 2001.
Kenley, R.A., Yim, K., Abrams, J., Ron, E., Turek, T., Marden, L.J., and Hollinger, J.O. Biotechnology and bone graft substitutes. Pharmaceutical Research 10, 1393-1401, 1993.
Kim, S.S., Park, M.S., Jeon, O., Choi, C.Y., and Kim, B.S. Poly (lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials 27, 1399-1409, 2006.
Kinaci, A., Neuhaus, V., and Ring, D.C. Trends in bone graft use in the United States. Orthopedics 37, e783-e788, 2014.
Kivrak, N., and Taş, A.C. Synthesis of calcium hydroxyapatite-tricalcium phosphate (HA-TCP) composite bioceramic powders and their sintering behavior. Journal of the American Ceramic Society 81, 2245-2252, 1998.
Kolodgie, F.D., Pacheco, E., Yahagi, K., Mori, H., Ladich, E., and Virmani, R. Comparison of particulate embolization after femoral artery treatment with IN. PACT Admiral versus Lutonix 035 paclitaxel-coated balloons in healthy swine. Journal of Vascular and Interventional Radiology 27, 1676-1685, 2016.
Kumar, P., Vinitha, B., and Fathima, G. Bone grafts in dentistry. Journal of Pharmacy and Bioallied Sciences 5, S125-127, 2013.
Kuo, T.F., Lin, H.C., Yang, K.C., Lin, F.H., Chen, M.H., Wu, C.C., and Chang, H.H. Bone marrow combined with dental bud cells promotes tooth regeneration in miniature pig model. Artificial Organs 35, 113-121, 2011.
Laurencin, C., Khan, Y., and El-Amin, S.F. Bone graft substitutes. Expert Review of Medical Devices 3, 49-57, 2006.
Legeros, R.Z., Trautz, O.R., Legeros, J.P., Klein, E., and Shirra, W.P. Apatite crystallites: effects of carbonate on morphology. Science 155, 1409-1411, 1967.
Li, J.J., Kaplan, D.L., and Zreiqat, H. Scaffold-based regeneration of skeletal tissues to meet clinical challenges. Journal of Materials Chemistry B 2, 7272-7306, 2014.
Li, Y., Chen, S.K., Li, L., Qin, L., Wang, X.L., and Lai, Y.X. Bone defect animal models for testing efficacy of bone substitute biomaterials. Journal of Orthopaedic Translation 3, 95-104, 2015.
Lim, H.C., Song, K.H., You, H., Lee, J.S., Jung, U.W., Kim, S.Y., and Choi, S.H. Effectiveness of biphasic calcium phosphate block bone substitutes processed using a modified extrusion method in rabbit calvarial defects. Journal of Periodontal and Implant Science 45, 46-55, 2015.
MacDonald, R.A., Laurenzi, B.F., Viswanathan, G., Ajayan, P.M., and Stegemann, J.P. Collagen-carbon nanotube composite materials as scaffolds in tissue engineering. Journal of Biomedical Materials Research Part A 74A, 489-496, 2005.
Marin, C., Luyten, F.P., Van der Schueren, B., Kerckhofs, G., and Vandamme, K. The impact of type 2 diabetes on bone fracture healing. Frontiers in Endocrinology 9, 15, 2018.
Matassi, F., Botti, A., Sirleo, L., Carulli, C., and Innocenti, M. Porous metal for orthopedics implants. Clinical Cases in Mineral and Bone Metabolism 10, 111, 2013.
Matsuura, A., Kubo, T., Doi, K., Hayashi, K., Morita, K., Yokota, R., Hayashi, H., Hirata, I., Okazaki, M., and Akagawa, Y. Bone formation ability of carbonate apatite-collagen scaffolds with different carbonate contents. Dental Materials Journal 28, 234-242, 2009.
Murugan, R., Ramakrishna, S., and Rao, K.P. Nanoporous hydroxy-carbonate apatite scaffold made of natural bone. Materials Letters 60, 2844-2847, 2006.
Muschler, G.F., Nakamoto, C., and Griffith, L.G. Engineering principles of clinical cell-based tissue engineering. Journal of Bone and Joint Surgery 86, 1541-1558, 2004.
Nakamura, K., Koshino, T., and Saito, T. Osteogenic response of the rabbit femur to a hydroxyapatite thermal decomposition product-fibrin glue mixture. Biomaterials 19, 1901-1907, 1998.
Ohtsuki, C., Miyazaki, T., and Tanihara, M. Development of bioactive organic-inorganic hybrid for bone substitutes. Materials Science and Engineering C-Biomimetic and Supramolecular Systems 22, 27-34, 2002.
Okazaki, M. Creation of highly functional CO3Ap-collagen scaffold biomaterials. Dental Materials Journal 29, 1-8, 2010.
Pabbruwe, M.B., Esfandiari, E., Kafienah, W., Tarlton, J.F., and Hollander, A.P. Induction of cartilage integration by a chondrocyte/collagen-scaffold implant. Biomaterials 30, 4277-4286, 2009.
Paderni, S., Terzi, S., and Amendola, L. Major bone defect treatment with an osteoconductive bone substitute. Musculoskeletal Surgery 93, 89-96, 2009.
Park, S.N., Lee, H.J., Lee, K.H., and Suh, H. Biological characterization of EDC-crosslinked collagen-hyaluronic acid matrix in dermal tissue restoration. Biomaterials 24, 1631-1641, 2003.
Park, S.N., Park, J.C., Kim, H.O., Song, M.J., and Suh, H. Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide cross-linking. Biomaterials 23, 1205-1212, 2002.
Pasteris, J.D., Wopenka, B., and Valsami-Jones, E. Bone and tooth mineralization: why apatite? Elements 4, 97-104, 2008.
Pati, F., Adhikari, B., and Dhara, S. Isolation and characterization of fish scale collagen of higher thermal stability. Bioresource Technology 101, 3737-3742, 2010.
Pearce, A., Richards, R., Milz, S., Schneider, E., and Pearce, S. Animal models for implant biomaterial research in bone: a review. European Cells and Materials 13, 1-10, 2007.
Peric, M., Dumic-Cule, I., Grcevic, D., Matijasic, M., Verbanac, D., Paul, R., Grgurevic, L., Trkulja, V., Bagi, C.M., and Vukicevic, S. The rational use of animal models in the evaluation of novel bone regenerative therapies. Bone 70, 73-86, 2015.
Piert, M., Zittel, T.T., Becker, G.A., Jahn, M., Stahlschmidt, A., Maier, G., Machulla, H.J., and Bares, R. Assessment of porcine bone metabolism by dynamic F-18 fluoride ion PET: Correlation with bone histomorphometry. Journal of Nuclear Medicine 42, 1091-1100, 2001.
Pyszko, M., Paral, V., and Kyllar, M. Thickness of the substantia compacta of porcine long bones. Veterinary Medicine 58, 543-552, 2013.
Raina, D.B., Qayoom, I., Larsson, D., Zheng, M.H., Kumar, A., Isaksson, H., Lidgren, L., and Tägil, M. Guided tissue engineering for healing of cancellous and cortical bone using a combination of biomaterial based scaffolding and local bone active molecule delivery. Biomaterials 188, 38-49, 2019.
Ratner, B.D., Hoffman, A.S., Schoen, F.J., and Lemons, J.E. Bioresorbable and bioerodible materials. Biomaterials Science: an Introduction to Materials in Medicine, Academic Press, United States San Dieo, 64-72, 1996.
Rauch, F., and Glorieux, F.H. Osteogenesis imperfecta. Lancet 363, 1377-1385, 2004.
Rehakova, M., Bakoš, D., Vizarova, K., Soldán, M., and Juríc˘ ková, M. Properties of collagen and hyaluronic acid composite materials and their modification by chemical crosslinking. Journal of Biomedical Materials Research 30, 369-372, 1996.
Rehkamper, M., Schonbachler, M., and Stirling, C.H. Multiple collector ICP-MS : introduction to instrumentation, measurement techniques and analytical capabilities. Geostandards Newsletter-the Journal of Geostandards and Geoanalysis 25, 23-40, 2001.
Reichert, J.C., Saifzadeh, S., Wullschleger, M.E., Epari, D.R., Schutz, M.A., Duda, G.N., Schell, H., van Griensven, M., Redl, H., and Hutmacher, D.W. The challenge of establishing preclinical models for segmental bone defect research. Biomaterials 30, 2149-2163, 2009.
Ren, L., Qian, Z., and Ren, L. Biomechanics of musculoskeletal system and its biomimetic implications: a review. Journal of Bionic Engineering 11, 159-175, 2014.
Reynolds, M.A., Aichelmann Reidy, M.E., Branch Mays, G.L., and Gunsolley, J.C. The efficacy of bone replacement grafts in the treatment of periodontal osseous defects. A systematic review. Annals of Periodontology 8, 227-265, 2003.
Riggs, B.L., and Melton, L.J. The worldwide problem of osteoporosis-insights afforded by epidemiology. Bone 17, S505-S511, 1995.
Ripamonti, U. Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models. Biomaterials 17, 31-35, 1996.
Rodriguez, M.I.A., Barroso, L.G.R., and Sanchez, M.L. Collagen: a review on its sources and potential cosmetic applications. Journal of Cosmetic Dermatology 17, 20-26, 2018.
Roffi, A., Di Matteo, B., Krishnakumar, G.S., Kon, E., and Filardo, G. Platelet-rich plasma for the treatment of bone defects: from pre-clinical rational to evidence in the clinical practice. A systematic review. International Orthopaedics 41, 221-237, 2017.
Roseti, L., Parisi, V., Petretta, M., Cavallo, C., Desando, G., Bartolotti, I., and Grigolo, B. Scaffolds for bone tissue engineering: state of the art and new perspectives. Materials Science and Engineering C-Materials for Biological Applications 78, 1246-1262, 2017.
Runyan, C.M., and Gabrick, K.S. Biology of bone formation, fracture Healing, and distraction osteogenesis. Journal of Craniofacial Surgery 28, 1380-1389, 2017.
Runyan, C.M., Vu, A.T., Rumburg, A., Bove, K., Racadio, J., Billmire, D.A., and Taylor, J.A. Repair of a critical porcine tibial defect by means of allograft revitalization. Plastic and Reconstructive Surgery 136, 461E-473E, 2015.
Samavedi, S., Whittington, A.R., and Goldstein, A.S. Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior. Acta Biomaterialia 9, 8037-8045, 2013.
Schindeler, A., McDonald, M.M., Bokko, P., and Little, D.G. Bone remodeling during fracture repair: the cellular picture. Seminars in Cell and Developmental Biology 19, 459-466, 2008.
Schubert, T., Lafont, S., Beaurin, G., Grisay, G., Behets, C., Gianello, P., and Dufrane, D. Critical size bone defect reconstruction by an autologous 3D osteogenic-like tissue derived from differentiated adipose MSCs. Biomaterials 34, 4428-4438, 2013.
Shamsunder Rao, V., and Kothapalli, J. The diaphyseal nutrient foramina architecture-a study on the human upper and lower limb long bones. Journal of Pharmacy and Biological Sciences 9, 36-41, 2014.
Shiue, Y.L., Yang, J.R., Liao, Y.J., Kuo, T.Y., Liao, C.H., Kang, C.H., Tai, C., Anderson, G.B., and Chen, L.R. Derivation of porcine pluripotent stem cells for biomedical research. Theriogenology 86, 176-181, 2016.
Sionkowska, A., and Kozłowska, J. Properties and modification of porous 3-D collagen/hydroxyapatite composites. International Journal of Biological Macromolecules 52, 250-259, 2013.
Song, X., Zhu, C.H., Fan, D.D., Mi, Y., Li, X., Fu, R.Z., Duan, Z.G., Wang, Y., and Feng, R.R. A novel human-like collagen hydrogel scaffold with porous structure and sponge-like properties. Polymers 9, 16, 2017.
Sun, Z.Y., Kennedy, K.S., Tee, B.C., Damron, J.B., and Allen, M.J. Establishing a critical-size mandibular defect model in growing pigs: characterization of spontaneous healing. Journal of Oral and Maxillofacial Surgery 72, 1852-1868, 2014.
Tang, D., Tare, R.S., Yang, L.Y., Williams, D.F., Ou, K.L., and Oreffo, R.O.C. Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration. Biomaterials 83, 363-382, 2016.
Tieliewuhan, Y., Hirata, I., Sasaki, A., Minagi, H., and Okazaki, M. Osteoblast proliferation behavior and bone formation on and in CO3apatite-collagen sponges with a porous hydroxyapatite frame. Dental Materials Journal 23, 258-264, 2004.
Wahl, D., and Czernuszka, J. Collagen-hydroxyapatite composites for hard tissue repair. European Cells and Materials 11, 43-56, 2006.
Wahl, D.A., Sachlos, E., Liu, C., and Czernuszka, J.T. Controlling the processing of collagen-hydroxyapatite scaffolds for bone tissue engineering. Journal of Materials Science: Materials in Medicine 18, 201-209, 2007.
Wang, H.X., Cheng, H., Tang, X.Y., Chen, J.Y., Zhang, J., Wang, W., Li, W.K., Lin, G.L., Wu, H., and Liu, C.X. The synergistic effect of bone forming peptide-1 and endothelial progenitor cells to promote vascularization of tissue engineered bone. Journal of Biomedical Materials Research Part A 106, 1008-1021, 2018.
Wang, W.H., and Yeung, K.W.K. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioactive Materials 2, 224-247, 2017.
Weinstein, S.L.B., Joseph A. Musculoskeletal tissues and the musculoskeletal system. Turek's Orthopaedics: Principles and Their Application, Lippincott Williams and Wilkins, United States, 4-17, 2005.
Whitaker, M., Quirk, R., Howdle, S., and Shakesheff, K. Growth factor release from tissue engineering scaffolds. Journal of Pharmacy and Pharmacology 53, 1427-1437, 2001.
Williams, D.F. On the mechanisms of biocompatibility. Biomaterials 29, 2941-2953, 2008.
Winkler, T., Sass, F.A., Duda, G.N., and Schmidt-Bleek, K. A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: the unsolved challenge. Bone and Joint Research 7, 232-243, 2018.
Woodard, J.R., Hilldore, A.J., Lan, S.K., Park, C., Morgan, A.W., Eurell, J.A.C., Clark, S.G., Wheeler, M.B., Jamison, R.D., and Johnson, A.J.W. The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity. Biomaterials 28, 45-54, 2007.
Wray, L.S., Hu, X., Gallego, J., Georgakoudi, I., Omenetto, F.G., Schmidt, D., and Kaplan, D.L. Effect of processing on silk-based biomaterials: Reproducibility and biocompatibility. Journal of Biomedical Materials Research Part B-Applied Biomaterials 99B, 89-101, 2011.
Wu, S.L., Liu, X.M., Yeung, K.W.K., Liu, C.S., and Yang, X.J. Biomimetic porous scaffolds for bone tissue engineering. Materials Science and Engineering R-Reports 80, 1-36, 2014.
Yang, J.R., Hsu, C.W., Liao, S.C., Lin, Y.T., Chen, L.R., and Yuan, K. Transplantation of embryonic stem cells improves the regeneration of periodontal furcation defects in a porcine model. Journal of Clinical Periodontology 40, 364-371, 2013.
Yilmaz, D., Dogan, N., Ozkan, A., Sencimen, M., Ora, B.E., and Mutlu, I. Effect of platelet rich fibrin and beta tricalcium phosphate on bone healing. A histological study in pigs. Acta Cirurgica Brasileira 29, 59-65, 2014.
Yokota, R., Hayashi, H., Hirata, I., Miake, Y., Yanagisawa, T., and Okazaki, M. Detailed consideration of physicochemical properties of CO(3)apatites as biomaterials in relation to carbonate content using ICP, X-ray diffraction, FT-IR, SEM, and HR-TEM. Dental Materials Journal 25, 597-603, 2006.
Yu, C.C., Chang, J.J., Lee, Y.H., Lin, Y.C., Wu, M.H., Yang, M.C., and Chien, C.T. Electrospun scaffolds composing of alginate, chitosan, collagen and hydroxyapatite for applying in bone tissue engineering. Materials Letters 93, 133-136, 2013.
Zhang, C., Yan, B.X., Cui, Z., Cui, S.J., Zhang, T., Wang, X.D., Liu, D.W., Yang, R.L., Jiang, N., Zhou, Y.H., and Liu, Y. Bone regeneration in minipigs by intrafibrillarly-mineralized collagen loaded with autologous periodontal ligament stem cells. Scientific Reports 7, 9, 2017a.
Zhang, Q.H., Schmelzer, E., Gerlach, J.C., and Nettleship, I. A microstructural study of the degradation and calcium release from hydroxyapatite-calcium oxide ceramics made by infiltration. Materials Science and Engineering C-Materials for Biological Applications 73, 684-691, 2017b.
Zhao, S., Zhang, J., Zhu, M., Zhang, Y., Liu, Z., Tao, C., Zhu, Y., and Zhang, C. Three-dimensional printed strontium-containing mesoporous bioactive glass scaffolds for repairing rat critical-sized calvarial defects. Acta Biomaterialia 12, 270-280, 2015.
Zhou, J., Xu, C., Wu, G., Cao, X., Zhang, L., Zhai, Z., Zheng, Z., Chen, X., and Wang, Y. In vitro generation of osteochondral differentiation of human marrow mesenchymal stem cells in novel collagen-hydroxyapatite layered scaffolds. Acta Biomaterialia 7, 3999-4006, 2011.
校內:2025-03-01公開