| 研究生: |
林于中 Lin, Yu-Chung |
|---|---|
| 論文名稱: |
利用FDTD光電模擬方法研究提昇電致發光顯示元件發光效率 Enhancing photon efficiency of OLED with electro-optical simulation of FDTD method |
| 指導教授: |
陳寬任
Chen, Kuan-Ren |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 結構最佳化 、反射波疊加 、有機發光二極體 、發光效率 |
| 外文關鍵詞: | optimum thickness, efficiency, superposition, phase, oled |
| 相關次數: | 點閱:92 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
An important mechanics of light extraction in organic light-emitting diode (OLED) is the propagation of electromagnetic field. However, the critical cause of the enhancement of emissive efficiency is how to control the electromagnetic waves of different phase superpose efficaciously. The influence of the phase difference comes from the reflection and transmission of electromagnetic wave, and their coefficients are distinct depend on the characteristic of material. Therefore, we rely on the analysis of material parameter and each traveling waves in OLED for the guide of optimum thickness. We used the tool of self-development FDTD (Finite-Difference Time-Domain method) simulation code to establish OLED model (the information provided by CHEL) and simulate specific modulated results. With the use of three optimized structure models, there are specific improvements of 47%, 4.9 times and 2.28 times approximately in the extraction efficiency of the OLED is expected theoretically.
[1] “How OLEDs Work”, 1997-2007 HowStuffWorks, Inc. Online posting. <http://electronics.howstuffworks.com/oled.htm>
[2] “OLED的簡介”, Online posting. 7 December 2006,
<http://163.23.210.150/oled/oled_intro.htm>
[3] Kristiaan Neyts and Patrick De Visschere et. al.,J. Opt. Soc. Am. B,
Vol. 17, No. 1/January, 2000.
[4] J. Chan et. al., Proc. of SPIE Vol. 5277, 2004.
[5] E. F. Schubert, “Light-Emitting Diodes”, Cambridge University Press (2003).
[6] A. Scherer et al., IEEE Transactions on Nanotechnology, vol. 1, p. 1, 2002.
[7] B. J. Matterson et al., Adv. Mater., vol. 13, p. 123, 2001.
[8] J. M. Lupton et al., Appl. Phys. Lett., vol. 77, p. 3340, 2000.
[9] I. Schnitzer et al., Appl. Phys. Lett., vol. 63, p. 2174, 1993.
[10] C. C. Lin et al., Appl. Phys. Lett., vol. 87, 021102, 2005.
[11] E. F. Schubert et al., Science, vol. 265, p. 943, 1994.
[12] H. Raether, “Surface Plasmon on Smooth and Rough Surfaces and on Gratings”, Springer-Verlag, 1988.
[13] P. A. Hobson et al., IEEE Journal on Selected Topics in Quantum Electronics, vol. 8, p. 378, 2002.
[14] J. Vuckovic et al., IEEE Journal of Quantum Electronics, vol. 36, p. 1131, 2000.
[15] K. Okamoto et al., Nature Material, vol. 3, p. 601, 2004.
[16] “Finite-difference time-domain method”, Wikimedia Foundation Inc., Online posting. 16 May 2007, <http://en.wikipedia.org/wiki/Finite-difference_time-domain_method>
[17] A. Taflove and S. C. Hangess, “Computational Electrodynamics:The Finite-Difference Time-Domain Method”, 3rd ed. Boston, MA: Artech House, 2005.
[18] D. M. Sullivan, IEEE Microwave Guided Wave Lett., 7, 184 (1997).
[19] P. B. Johnson & R. W. Christy, Physical Review B 6, p4370, (1972).
[20] David K. Cheng, “Field and Wave Electromagnetics”, 2nd ed. (1989).
[21] David J. Griffiths, “Introduction to Electrodynamics”, 3rd ed. (1999).
[22] John David Jackson, “Classical Electrodynamics”, 3rd ed. (1999)
[23] EDWRAD D. PALIK, “Handbook of Optical Constants of Solids”, (1985).