簡易檢索 / 詳目顯示

研究生: 王仁懿
Wang, Jen-Yi
論文名稱: 利用光電動技術搭配雙指標性蛋白對淚液進行高靈敏糖尿病視網膜病變篩檢
Sensitive Tear Screening of Diabetic Retinopathy with Dual Biomarkers Enabled by a Rapid Electrokinetic Patterning Platform
指導教授: 莊漢聲
Chuang, Han-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 64
中文關鍵詞: 糖尿病視網膜病變生物標誌物微珠式三明治免疫分析光電動技術眼淚脂質運載蛋白1血管內皮生長因子
外文關鍵詞: Diabetic retinopathy, Bead-based immunoassay, Tear, Optoelectrokinetic platform, LCN1, VEGF
相關次數: 點閱:122下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在過去的幾十年中,微珠式三明治免疫法已經引起了科學界的興趣,這是因為它們在檢測各種生物標誌物方面具有快速和複數檢測的能力。然而,由於濃縮的方法有限,應用在檢測低濃度分析物方面仍然是一個挑戰。為此,我們研究提出了一種通過光電動平台進行微珠濃縮的方法,隨後以此技術檢測了雙重的生物標記物,用於篩檢稱為糖尿病性視網膜病(DR)的眼睛疾病。在這項研究中,在目標抗原存在下,微珠的表面形成了夾心的免疫複合物,免疫結構包含抓取式抗體-抗原(生物標誌物)-探測性抗體。然後,通過光電動平台將各個微珠集中,以增強其信號。信號可在10 秒內迅速升高,並且偵測極限可達到100 pg / mL。我們以前的研究顯示,快速光電動圖紋法中微珠的行為與所提供的電場頻率和微珠的大小有關。以前的研究已成功分離三個不同大小(1、3和5 μm)的微珠。在這項研究中,相同粒徑的微珠分別修飾上螢光微珠和螢光二抗,並且將微珠通過不同的表面性質分開。為了進行實際的DR檢測,我們使用了兩種生物標誌物脂質運載蛋白1(LCN1)和血管內皮生長因子(VEGF)以增加準確性與特異性。從檢測患者收集到約20 μL的眼淚樣品。此兩種生物標誌物的濃度均顯示具有出隨糖尿病視網膜病變的嚴重程度而升高的趨勢。根據檢測到的曲線,從24個臨床樣本中確認了LCN1和VEGF的兩個生物標誌物在增生型糖尿病視網膜病變中的濃度閾值在此光電平台上分別為250 µg/ml與10 ng/ml 。最後為了驗證兩種閾值的有效性,我們對五個隨機受試者的臨床淚液樣本進行了單盲測試。該驗證的最終結果顯示檢測正確的準確度至少為 80%以上。這種非侵入性檢測為DR的早期診斷提供了一種新的方法,並且希望將來可以增加對高危險糖尿病患者的篩檢率。

    Bead-based immunosensors have been intriguing the scientific community over the past decades due to their rapid and multiplexed capabilities in the detection of various biological targets. Nevertheless, their use in the detection of low-abundance analytes remains a continual challenge because of the limited number of active enrichment approaches. To this end, our research presents a delicate microbead enrichment by an optoelectrokinetic platform, followed by the detection of dual biomarkers for the sensitive screening of an eye disease termed diabetic retinopathy (DR). In this study, microbeads turned fluorescent as their surfaces formed sandwiched immunocomplexes in the presence of target antigens. Tiny fluorescent dots were then concentrated by the optoelectrokinetic platform for the enhancement of their signals. The signal rapidly escalated in 10 s, and the optimal limit of detection was nearly 100 pg/mL. Our previous studies have shown that the behavior of microbeads in REP is related to the frequency of the electric field provided and the size of the bead. It has been successfully separated and mixed with three beads of different sizes (1, 3 and 5 μm). In this study, the microbeads of the same particle size are used to modify the fluorescent microbeads and the fluorescent secondary antibody respectively, and the microbeads are separated by different surface properties. For practical DR screening, two biomarkers, lipocalin 1 (LCN1) and vascular endothelial growth factor (VEGF), were used. Approximately 20 μL of analytes was collected from the tear samples of the tested patients. The concentrations of both biomarkers showed escalating trends with the severity of DR. Two concentration thresholds of LCN1 250 µg/ml and VEGF 10 ng/ml that indicate proliferative DR were determined out of 24 clinical samples based on the receiver operating characteristic curves. For verification, a single-blinded test was conducted with additional clinical tear samples from five random subjects. The final outcome of this evaluation showed an accuracy of >80%. This noninvasive screening provides a potential means for the early diagnosis of DR and may increase the screening rate among the high-risk diabetic population in the future.

    摘要 ……………………………………………………………………...……......I ABSTRACT ……………………………………………………………….………..II 誌謝 ………………………………………...…………………………………...IV CONTENTS ………………………………………………………………...………V LIST OF TABLES ………………………………………………………………....VII LIST OF FIGURES …………………………………………………………...VIII CHAPTER 1 INTRODUCTION ……………………………………………………1 1.1 Motivation and Overview…………………………………………………...1 1.2 Diabetic Retinopathy………………………………………………………..5 1.2.1 The Progressive stages of DR……………………………………5 1.2.2 Diagnosis of DR…………………….…………………………….8 1.3 Biomarkers of DR in Tear………………………………………………….10 1.4 Biomarker Diagnosis in Human Tear Fluids……………………………….12 1.5 Bead-based Sandwiched Immunoassay…………………………………..13 1.6 Aims and Contributions of the Thesis……………………………………14 CHAPTER 2 MATERIALS AND METHODS …………………………………..16 2.1 Bead-based Sandwiched Immunoassay………………………………….16 2.2 Clinical Tear Samples……………...…………………………………….18 2.3 Sample Preparation and Protocol……….………………………….........19 2.4 Rapid Electrokinetic Patterning……….………………………….........21 2.5 Rapid Electrokinetic Patterning System …………………………………..23 2.5.1 Chip Fabrication………………………………………………...23 2.5.2 Experimental Setup ……………………………………………..23 2.5.3 Mechanism of the Optoelectrokinetic Method…………………..25 2.6 Image Analysis…………………………………………………………..28 CHAPTER 3 RESULTS AND DISCUSSIONS …………………………………..29 3.1 Results of Bead-based Immunosensing……………………………………29 3.2 Results of Specific Binding………………………………………………..30 3.2.1 Specific Binding with LCN1……………………………………….30 3.2.2 Specific Binding with VEGF……………………………………….31 3.3 Results of Calibration Curve with LCN1 and VEGF………………………33 3.4 Same-size Particles Sorting by Surface Modifications……………………..35 3.5 Simultaneous Detection of Dual Biomarkers……………………………37 3.6 Determination of Thresholds for Biomarkers……………………………39 3.7 Screening Thresholds of LCN1 and VEGF from Clinical Samples………41 3.8 Evaluation of the Optoeletrokinetic Platform with Single-blinded Tests…..46 3.9 Simultaneous Screening with Dual Biomarkers for the Clinical Samples….51 CHAPTER 4 CONCLUSION …………………………………………………..53 CHAPTER 5 FUTURE WORK …………………………………………………55 REFERENCES …………………………………………………………………..56 APPENDICES ……………………………………………………………….60 Appendix A: The form of Institutional Review Board………..……….…………60 Appendix B: The paper published on Lab on a chip ………….…………….……63 Appendix C: Certificate of merit…………………………………………………64

    1. American Diabetes Association, Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2010, 33 (Supplement_1), S62-S69.
    2. Fong, D. S.; Aiello, L.; Gardner, T. W.; King, G. L.; Blankenship, G.; Cavallerano, J. D.; Ferris, F. L.; Klein, R., Retinopathy in Diabetes. Diabetes Care 2004, 27 (Supplement 1), S84-S87.
    3. Duh, E. J.; Sun, J. K.; Stitt, A. W., Diabetic retinopathy: current understanding, mechanisms, and treatment strategies. JCI Insight 2017, 2 (14).
    4. Skaggs, J. B.; Zhang, X.; Olson, D. J.; Garg, S.; Davis, R. M., Screening for Diabetic Retinopathy. North Carolina Medical Journal 2017, 78 (2), 121-123.
    5. Scanlon, P. H., Screening Intervals for Diabetic Retinopathy and Implications for Care. Curr Diab Rep 2017, 17 (10), 96-96.
    6. Huang, D.; Swanson, E. A.; Lin, C. P.; Schuman, J. S.; Stinson, W. G.; Chang, W.; Hee, M. R.; Flotte, T.; Gregory, K.; Puliafito, C. A.; et, a., Optical coherence tomography. Science 1991, 254 (5035), 1178.
    7. Dithmar, S.; Holz, F. G., Fluorescence angiography in ophthalmology. Springer Science & Business Media: 2008.
    8. Fineschi, V.; Monasterolo, G.; Rosi, R.; Turillazzi, E., Fatal anaphylactic shock during a fluorescein angiography. Forensic Science International 1999, 100 (1-2), 137-142.
    9. Hitosugi, M.; Omura, K.; Yokoyama, T.; Kawato, H.; Motozawa, Y.; Nagai, T.; Tokudome, S., 2. An Autopsy Case of Fatal Anaphylactic Shock Following Fluorescein Angiography. Medicine, Science and the Law 2004, 44 (3), 264-265.
    10. Mayer, K. M.; Lee, S.; Liao, H.; Rostro, B. C.; Fuentes, A.; Scully, P. T.; Nehl, C. L.; Hafner, J. H., A Label-Free Immunoassay Based Upon Localized Surface Plasmon Resonance of Gold Nanorods. ACS Nano 2008, 2 (4), 687-692.
    11. Sagle, L. B.; Ruvuna, L. K.; Ruemmele, J. A.; Van Duyne, R. P., Advances in localized surface plasmon resonance spectroscopy biosensing. Nanomedicine 2011, 6 (8), 1447-1462.
    12. Wei, T.; Tu, W.; Zhao, B.; Lan, Y.; Bao, J.; Dai, Z., Electrochemical monitoring of an important biomarker and target protein: VEGFR2 in cell lysates. Scientific Reports 2014, 4, 3982.
    13. Ishige, Y.; Shimoda, M.; Kamahori, M., Extended-gate FET-based enzyme sensor with ferrocenyl-alkanethiol modified gold sensing electrode. Biosensors and Bioelectronics 2009, 24 (5), 1096-1102.
    14. Zengin, A.; Tamer, U.; Caykara, T., Fabrication of a SERS based aptasensor for detection of ricin B toxin. Journal of Materials Chemistry B 2015, 3 (2), 306-315.
    15. Hsu, M.-Y.; Chiu, C.-C.; Wang, J.-Y.; Huang, C.-T.; Huang, Y.-F.; Liou, J.-C.; Chen, C.; Chen, H.-C.; Cheng, C.-M., Paper-Based Microfluidic Platforms for Understanding the Role of Exosomes in the Pathogenesis of Major Blindness-Threatening Diseases. Nanomaterials 2018, 8 (5), 310.
    16. Hsu, M.-Y.; Yang, C.-Y.; Hsu, W.-H.; Lin, K.-H.; Wang, C.-Y.; Shen, Y.C.; Chen, Y.-C.; Chau, S.-F.; Tsai, H.-Y.; Cheng, C.-M., Monitoring the VEGF level in aqueous humor of patients with ophthalmologically relevant diseases via ultrahigh sensitive paper-based ELISA. Biomaterials 2014, 35 (12), 3729-3735.
    17. Hsu, M.-Y.; Chen, S.-J.; Chen, K.-H.; Hung, Y.-C.; Tsai, H.-Y.; Cheng, C.M., Monitoring VEGF levels with low-volume sampling in major visionthreatening diseases: age-related macular degeneration and diabetic retinopathy. Lab on a Chip 2015, 15 (11), 2357-2363.
    18. Walsh Iii, D. I.; Sommer, G. J.; Schaff, U. Y.; Hahn, P. S.; Jaffe, G. J.; Murthy, S. K., A centrifugal fluidic immunoassay for ocular diagnostics with an enzymatically hydrolyzed fluorogenic substrate. Lab on a Chip 2014, 14 (15), 2673.
    19. Ruiz-Valdepeñas Montiel, V.; Campuzano, S.; Torrente-Rodríguez, R. M.; Reviejo, A. J.; Pingarrón, J. M., Electrochemical magnetic beads-based immunosensing platform for the determination of α-lactalbumin in milk. Food Chemistry 2016, 213, 595-601.
    20. Liu, L.; Xia, N.; Liu, H.; Kang, X.; Liu, X.; Xue, C.; He, X., Highly sensitive and label-free electrochemical detection of microRNAs based on triple signal amplification of multifunctional gold nanoparticles, enzymes and redoxcycling reaction. Biosensors and Bioelectronics 2014, 53, 399-405.
    21. Chung, C. Y.; Wang, J. C.; Chuang, H. S., Rapid Bead-Based Antimicrobial Susceptibility Testing by Optical Diffusometry. Plos One 2016, 11 (2), 15.
    22. Wang, J.-C.; Ku, H.-Y.; Shieh, D.-B.; Chuang, H.-S., A bead-based fluorescence immunosensing technique enabled by the integration of Förster resonance energy transfer and optoelectrokinetic concentration. Biomicrofluidics 2016, 10 (1), 014113.
    23. Wang, K.-C.; Kumar, A.; Williams, S. J.; Green, N. G.; Kim, K. C.; Chuang, H.-S., An optoelectrokinetic technique for programmable particle manipulation and bead-based biosignal enhancement. Lab on a Chip 2014, 14 (20), 3958-3967.
    24. Kwon, J.-S.; Ravindranath, S. P.; Kumar, A.; Irudayaraj, J.; Wereley, S. T., Opto-electrokinetic manipulation for high-performance on-chip bioassays. Lab on a Chip 2012, 12 (23), 4955.
    25. Kwon, J.-S.; Wereley, S. T., Towards New Methodologies for Manipulation of Colloidal Particles in a Miniaturized Fluidic Device: Optoelectrokinetic Manipulation Technique. Journal of Fluids Engineering 2013, 135 (2), 021306.
    26. Han, D.; Park, J.-K., Optoelectrofluidic enhanced immunoreaction based on optically-induced dynamic AC electroosmosis. Lab on a Chip 2016.
    27. Zhao, Y.; Cao, M.; McClelland, J. F.; Shao, Z.; Lu, M., A photoacoustic immunoassay for biomarker detection. Biosensors and Bioelectronics 2016, 85, 261-266.
    28. Tiffany, J., The Normal Tear Film. Surgery for the Dry Eye 2008, vol 41, pp 1-20
    29. Fullard, R. J.; Kissner, D. M., Purification of the isoforms of tear specific prealbumin. Current Eye Research 1991, 10 (7), 613-628.
    30. Zhou, L.; Zhao, S. Z.; Koh, S. K.; Chen, L.; Vaz, C.; Tanavde, V.; Li, X. R.; Beuerman, R. W., In-depth analysis of the human tear proteome. Journal of Proteomics 2012, 75 (13), 3877-3885.
    31. Csősz, É.; Boross, P.; Csutak, A.; Berta, A.; Tóth, F.; Póliska, S.; Török, Z.; Tőzsér, J., Quantitative analysis of proteins in the tear fluid of patients with diabetic retinopathy. Journal of Proteomics 2012, 75 (7), 2196-2204.
    32. Danaei, G.; Finucane, M. M.; Lu, Y.; Singh, G. M.; Cowan, M. J.; Paciorek, C. J.; Lin, J. K.; Farzadfar, F.; Khang, Y.-H.; Stevens, G. A.; Rao, M.; Ali, M. K.; Riley, L. M.; Robinson, C. A.; Ezzati, M., National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants. The Lancet 2011, 378 (9785), 31-40.
    33. Moss, S. E.; Klein, R.; Kessler, S. D.; Richie, K. A., Comparison Between Ophthalmoscopy and Fundus Photography in Determining Severity of Diabetic Retinopathy. Ophthalmology 1985, 92 (1), 62-67.
    34. Kwiterovich, K. A.; Maguire, M. G.; Murphy, R. P.; Schachat, A. P.; Bressler, N. M.; Bressler, S. B.; Fine, S. L., Frequency of Adverse Systemic Reactions after Fluorescein Angiography. Ophthalmology 1991, 98 (7), 11391142.
    35. Hee, M. R., Optical Coherence Tomography of the Human Retina. Arch Ophthalmol 1995, 113 (3), 325.
    36. Kim, D.; Shim, J.; Chuang, H.-S.; Kim, K. C., Numerical simulation on the opto-electro-kinetic patterning for rapid concentration of particles in a microchannel. Biomicrofluidics 2015, 9 (3), 034102.
    37. Kim, H.-J.; Kim, P.-K.; Yoo, H.-S.; Kim, C.-W., Comparison of tear proteins between healthy and early diabetic retinopathy patients. Clinical Biochemistry 2012, 45 (1-2), 60-67.
    38. Costagliola, C.; Romano, V.; De Tollis, M.; Aceto, F.; Dell’Omo, R.; Romano, M. R.; Pedicino, C.; Semeraro, F., TNF-Alpha Levels in Tears: A Novel Biomarker to Assess the Degree of Diabetic Retinopathy. Mediators of Inflammation 2013, 2013, 1-6.
    39. Beigi, B.; Gupta, D.; Luo, Y. H. L.; Saldana, M.; Georgalas, I.; Kalantzis, G.; El-Hindy, N., Punctal function in lacrimal drainage: the ‘pipette sign’ and functional ectropion. Clinical and Experimental Optometry 2015, 98 (4), 366-369.
    40. Posa, A.; Bräuer, L.; Schicht, M.; Garreis, F.; Beileke, S.; Paulsen, F., Schirmer strip vs. capillary tube method: Non-invasive methods of obtaining proteins from tear fluid. Annals of Anatomy - Anatomischer Anzeiger 2013, 195 (2), 137-142.
    41. Wang, J.-C.; Ku, H.-Y.; Chen, T.-S.; Chuang, H.-S., Detection of lowabundance biomarker lipocalin 1 for diabetic retinopathy using optoelectrokinetic bead-based immunosensing. Biosensors and Bioelectronics 2017, 89, 701-709.
    42. Kwon, J.-S.; Wereley, S. T., Light-actuated electrothermal microfluidic motion: experimental investigation and physical interpretation. Microfluidics and Nanofluidics 2015, 19 (3), 609-619.
    43. Lee, S.; Kim, J.; Wereley, S. T.; Kwon, J.-S., Light-actuated electrothermal microfluidic flow for micro-mixing. Journal of Micromechanics and Microengineering 2019, 29 (1), 017003.
    44. Bhushan, B., Biomimetics. Encyclopedia of Nanotechnology 2012, 290-298.
    45. Wang, J.-Y.; Kwon, J.-S.; Hsu, S.-M.; Chuang, H.-S., Sensitive tear screening of diabetic retinopathy with dual biomarkers enabled using a rapid electrokinetic patterning platform. Lab on a chip 2020

    下載圖示 校內:2023-01-31公開
    校外:2023-01-31公開
    QR CODE