| 研究生: |
洪英盛 Hung, Ying-Sheng |
|---|---|
| 論文名稱: |
流道內橫向加裝傾斜擋板對質子交換膜燃料電池性能增益之研究 Investigation on Performance Augmentation of PEM Fuel Cells by Installing Inclined Baffles Transversely in a Flow Channel |
| 指導教授: |
吳鴻文
Wu, Horng-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 179 |
| 中文關鍵詞: | 質子交換膜燃料電池 、橫向傾斜擋板 、變異數分析 、田口實驗方法 、粒子群演算法 、阻抗分析 |
| 外文關鍵詞: | PEM fuel cell, inclined baffle, ANOVA, Taguchi method, Particle swarm optimization algorithm, Impedance analysis |
| 相關次數: | 點閱:113 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文係以數值模擬及實驗探討質子交換膜燃料電池的性能增益。數值模擬則包括兩部分,第一部分以文獻單通道研究不同角度及數量之傾斜擋板最佳位置組合為基礎,建立三維單通道質子交換膜燃料電池的數值模型,透過加裝角度30°、45°、60°及90°和數量1、3、5、7、9及11個來探討電池的性能,以決定最好性能的傾斜擋板角度及數量。
第二部分係以第一部分的最佳傾斜擋板角度及數量,安裝於蛇型全流道為基礎,在四種不同流道位置組合下數值分析研究電池的性能。得到電池在陰陽極流道於Case III的安排方式下,有最佳的淨功率,其輸出淨功率高於無加裝傾斜擋板的流道設計約 9.592 %。
本文實驗應用田口方法L27(313)直交表針對已加裝傾斜擋板 (Case III)之蛇形全流道進行實驗,運用L27(313)直交表的五種操作參數 (因子A:電池操作溫度、因子B:陽極入口相對濕度、因子C:陰極入口相對濕度、因子D:陽極化學計量比、因子E:陰極化學計量比),以最少的實驗次數進行因子對單電池的性能效應實驗,並利用L27(313)求出各因子的平均S/N,使用粒子群演算法建立連續替代模型,求出最佳組合。最佳組合為A=327 K, B=69.83%, C=60.00%, D=1.63及 E=1.59。最佳組合的平均品質損失減少百分率較最大功率組合相比提升24.94%。分析最佳參數水準組合及無加裝傾斜擋板的流道設計的交流阻抗,以驗證極化性能分析的趨勢。
This study investigates the best performance of proton exchange membrane fuel cells by numerical calculation and experiment. The numerical calculation consists of two parts. The first part explores the optimal arranging types of the various inclination angles and number of inclined baffles in the single channel. Three-dimensional single channel numerical modeling of proton exchange membrane fuel cell is established by installing different inclined baffles degrees of 30°, 45°, 60 ° and 90° as well as number of 1, 3, 5, 7, 9 and 11. Investigation the performance of the cell to determine the inclination angles and number of inclined baffles with the best performance.
The second part explores the optimal inclination angles and number of inclined baffles of the first part, installed in the full serpentine channel to examine the performance of the fuel cell numerically under the combination of four different flow channel positions. The results display that the fuel cell has the best net power in the arrangement of inclined baffles in Case III, of which output net power is higher than the design of the flow channel without inclined baffles.
In this study, the five operating parameters of Taguchi method L27(313) matrix (factor A: the cell temperature, factor B: anode inlet relative humidity, factor C: cathode inlet relative humidity, factor D: anode stoichiometric ratio, and factor E: cathode stoichiometric ratio) were used to conduct experiments on the full serpentine channel with the inclined baffles (Case III) installed. Adopting the mean S/N obtained by L27 (313) matrix established a Continuous-type Surrogate Model with particle swarm optimization to find the optimum combination, which is A=327 K, B=69.83%, C=60.00%, D=1.63, and E=1.59. This combination is confirmed to be the best combination by improving the average percentage reduction of quality loss (PRQL) by 24.97% compared with the factor combination of maximum electrical power. The trend of polarization performance analysis will be verified after analyzing the optimal parameter level combination that the impedance analysis of the flow channel design without additional inclined baffles.
References
[1] B. Frano, PEM fuel cells theory and practice. 2nd ed. Waltham, MA; London: Elsevier/Academic Press; 2013.
[2] F.C. Lee, “New energy”, Hsin Wen Ging published corporation, 2009.
[3] J. Larminie, A. Dicks, Fuel cell systems explained, John Wiley Inc, New York, pp.1-418, 2000.
[4] J.J. Huang, “Fuel cell”, Chun Hua books, 2007.
[5] B. Frano, PEM fuel cells theory and practice. 2nd ed. Waltham, MA; London: Elsevier/Academic Press; 2013.
[6] A.R.Maher, A.B. Sadiq, PEM fuel Cells: fundamentals, modeling, and applications, Washington: CreateSpace Independent Publishing Platform, 2013.
[7] Y. Wang, K.S. Chen, J. Mishler, S.C. Cho, X.C.Adroher, “A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research”, Apply Energy Vol. 88, pp. 981-1007, 2011.
[8] Y. Wang, K.S. Chen, S.C. Cho, PEM fuel cells: thermal and water management fundamentals, New York: Momentum Press, 2013.
[9] H.I.Lee, C.H.Lee, T.Y.Oh, S.G.ChoiI, W.Park, K.K.Baek, “Development of 1 kW class polymer electrolyte membrane fuel cell power generation system”, Journal of Power Sources, Vol.107, pp.110-119, 2002.
[10] C.H. Tu, “3D Flow Channels Design, Heat and Mass Transfer Analysis for Proton Exchange Membrane Fuel Cell”, Master thesis, National Cheng Kung University, 2003。
[11] B.C. Chen, “Location of droplet formation and water distribution for the various types of flow field designs of PEMFC”, Master thesis, National Central University, 2007。
[12] W.T. Lee, “Effects of Channel Flow Inlet and Baffle Arrangements and Expanding Paths on the Performance of PEM Fuel Cells”, Master thesis, Chung Yuan Christian University, 2012。
[13] W.C. Weng,“Transient Characteristics Of Proton Exchange Membrane Fuel Cells With The Cathode Flow Field Designs”, Master thesis, Huafan University, 2012。
[14] D.L. Wood, Y.S. Yi, T.V. Nguyen, “Effect of direct liquid water injection and interdigitated flow field on the performance of proton exchange membrane fuel cells”, Electrochimica Acta, Vol.43, pp. 3795-3809, 1998.
[15] WS. He, J.S. Yi, and T.V. Nguyen, “Two-phase Flow Model of the Cathode of PEM Fuel Cells Using Interdigitated Flow Fields ”, AICHE Journal, Vol. 46, pp. 2053-2064, 2000.
[16] P. L. Hentall, J.B. Lakeman, G. O. Mesped, P. L. Adcock, J.M. Moor, “New materials for polymer electrolyte membrane fuel cell current collectors”, Journal of Power Sources, Vol. 80, pp.235- 241,1999.
[17] H.C. Liu, W.M. Yan, C.Y. Soong, F. Chen, “Effects of baffle-blocked flow channel on reactant transport and cell performance of a proton exchange membrane fuel cell”, Journal of Power Sources, Vol. 142, pp.125-133, 2005.
[18] M. Bilgili, M. Bosomoiu, G.Tsotridis, Gas flow field with obstacles for PEM fuel cells at different operating conditions. Int. J. Hydrogen Energy, Vol. 23, pp. 2303-2311, 2015.
[19] S.W. Perng, H.W. Wu, “A three-dimensional numerical investigation of trapezoid baffles effect on non-isothermal reactant transport and cell net power in a PEMFC”, Applied Energy, Vol. 143, pp.81-95, 2015.
[20] H. Heidary, M.J. Kermani, A.K. Prasad, S.G. Advani, B. Dabir, “Numerical modelling of in-line and staggered blockages in parallel flowfield channels of PEM fuel cell”, Int. J. Hydrogen Energy Vol. 42, pp.2265-2277, 2017.
[21] E. Afshari, M. Mosharaf-Dehkordi, H. Rajabian, “An investigation of the PEM fuel cells performance with partially restricted cathode flow channels and metal foam as a flow distributor”, Energy, Vol.118, pp.705-715, 2017.
[22] H. Heidary, M.J. Kermani, A.K. Prasad, S.G. Adani, B. Dabir, “Numerical modelling of in-line and staggered blockages in parallel flow field channels of PEM fuel cells”, International of Hydrogen Energy, Vol. 42, pp.2265-2277, 2017.
[23] J.S. Park, J.C. Han, Y. Hung, S. Ou, “Heat Transfer Performance Comparisons of Five Different Rectangular Channels with Parallel Angled Ribs”, Int. Journal Heat Mass Transfer, Vol.35, pp.2891-2903, 1992.
[24] S. Fann, W.J. Yang, Zhang, “Local Heat Transfer in a Rotating Serpentine Passage with Rib-roughened Surface”, International Journal of Heat Mass Transfer, Vol.37, pp.217-228, 1994.
[25] R. Kiml, A. Magda, S. Mochizuki, A.Murata, “Rib-induced secondary flow effects on local circumferential heat transfer distribution inside a circular rib-roughened tube”, International Journal of Heat Mass Transfer, Vol.47, pp.1403-1412, 2004.
[26] R. Rezazadeh, N. Pourmahmoud, S. Asaadi, “Numerical investigation and performance analyses of rectangular mini channel with different types of ribs and their arrangements”, International Journal of Thermal Science, Vol. 132, pp.76-85, .2018.
[27] A. Heydari, O.A. Akbari, M.R. Safaei, M. Derakhshani, A. Alrashed, R. Mashayekhi, G.A.S. Shabani, M. Zarringhalam, T.K.Nguyen “The effect of attack angle of triangular ribs on heat transfer of nanofluids in a microchannel”, Journal of Thermal Analysis and Calorimetry, Vol. 131, pp. 2893-2912, 2018.
[28] A. Boonloi, W. Jedsadaratanachai, “Numerical prediction on flow and heat transfer in heat exchanger tube equipped with various flow attack angles of inclined-wavy surface”, Frontiers in Heat and Mass Transfer, Vol. 11, DOI: 10.5098/hmt.11.10, 2018.
[29] P. Javadi, S. Rashidi, J.A. Esfahani, “Effects of Rib Shapes on the Entropy Generation in a Ribbed Duct”, Journal of Thermophysics and Heat Transfer, Vol. 32, pp. 691-701, 2018.
[30] L.M. Su, T.L. Yang, S.W. Chang, C.L. Huang, “Effect of Reciprocation on Heat Transfer for Ribbed Duct Flow”, Journal of the Society of Naval Architects and Marine Engineers, Vol. 17, pp. 45-57, 1988.
[31] A. Okajima, T. Matsumoto, S. Kimura, “Aerodynamic Characteristics of Flat Plates with Various Angles of Attack in Oscillatory Flow”, JSME International Journal Series B, Vol.41, pp.214-220, 1998.
[32] B. Yang, T.Y. Gao, J Li, “Numerical investigation on flow and heat transfer of pulsating flow in various ribbed channels”, Applied Thermal Engineering, Vol. 145, pp.576-589, 2018.
[33] S.W. Chang, “Forced heat convection in a reciprocating duct fitted with 45 degree crossed rib”, International Journal of Thermal Science, Vol. 41, pp. 229-240, 2002.
[34] H.W. Wu, Chin-Teck Lau, “Unsteady Turbulent Heat Transfer of Mixed Convection in a Reciprocating Ribbed Circular Channel,” International Journal of Heat and Mass Transfer, Vol. 48, pp.2708-2721, 2005.
[35] S.W. Chang, S.W. Liou, W.H. Yeh, J.H. Hung, “Heat transfer in a radially rotating square-sectioned duct with two opposite walls roughened by 45 deg staggered ribs at high rotation number”, Journal of Heat Transfer-Transaction of the ASME, Vol. 129, pp. 188-199, 2007.
[36] H.W. Deng, Y. Li, Z. Tao, G.Q. Xu, S.Q. Tian, “ Pressure reduction and heat transfer performance in a rotating two-pass channel with staggered 45-deg ribs”, International Journal of Heat Mass Transfer, Vol. 108, pp. 2273-2282, 2017.
[37] G.Q. Xu, Y. Li, H.W. Deng, “Effect of rib spacing on heat transfer and friction in a rotating two-pass square channel with asymmetrical 90-deg rib turbulators”, Applied Thermal Engineering, Vol. 80, pp.386-395, 2015
[38] H.W. Wu and H.W. Gu, “Effects of Modified Flow Field on Optimal Parameters Estimation and Cell Performance of a proton exchange membrane Fuel Cell with the Taguchi Method”, International Journal of Hydrogen Energy, Vol. 37, pp.1613-1627, 2012.
[39] H.W. Ku, H.W. Wu, “Influences of operational factors on proton exchange membrane fuel cell performance with modified interdigitated flow field design”, Journal of Power Sources, Vol. 232, pp. 199-208, 2013.
[40] H.W. Wu, H.W. Ku, “Analysis of operating parameters considering flow orientation for the performance of a proton exchange membrane fuel cell using the Taguchi method”, Journal of Power Sources, Vol.195, pp.3621–363, 2010.
[41] P. Costamagna, K. Honegger, “Modeling of solid oxide heat exchanger integrated stacks and simulation at high fuel utilization”, Journal of The Electrochemical Society, Vol. 145, pp. 3995-4007, 1998.
[42] H. N. Jin, M. Kaviany, “Effective diffusivity and water-saturation distribution in single- and two-layer PEMFC diffusion medium”, International Journal of Heat and Mass Transfer, Vol. 46, pp. 4595-4611, 2003.
[43] P. K. Sinha, C. Y. Wang, “Liquidwater transport in a mixed-wet gas diffusion layer of a polymer electrolyte fuel cell”, Journal of Chemical Engineering Science, Vol. 63, pp. 1081-1091, 2008.
[44] T. E. Springer, T. A. Zawodzinski, S. Gottesfeld, “Polymer Electrolyte Fuel Cell Model”, Journal of The Electrochemical Society, Vol. 138, pp. 2334-2342, 1991.
[45] H. Ju, C.Y. Wang, “Experimental validation of a PEM fuel cell model by current distribution data”, Journal of The Electrochemical Society, Vol. 151, pp. 1954-1960, 2004.
[46] F.J. Wang, “Computational fluid dynamics analysis”, Tsinghua University Press, Beijing, 2004.
[47] S. Mazumder, J. V. Cole, “Rigorous 3-D mathematical modeling of PEM fuel cells II. Model predictions with liquid water transport, J. Electrochem. Soc., Vol. 150, pp.1510-17, 2003.
[48] R.K. Roy, “A primer on the Taguchi method”, Society of Manufacturing Engineers, Taipei, 1990.
[49] C.Y. Chen, “Effect of temperature and humidity on characteristics of phosphoric acid doped polybenzimidazole fuel cells”, National Cheng Kung University, 2010.
[50] G. J. Park, “Analytic methods for design practice”, Springer Science & Business Media, Berlin, 2007.
[51] H.R. Pletcher, J.C. Tannehill, D.Anderson, Computational fluid mechanics and heat transfer. 3rd ed., New York: CRC press, 2011
[52] H.H. Lee,“Taguchi Methods: Principles and Practices of Quality Design”, GAU LIH BOOK CO., LTD. , 2011。
[53] K. Dehnad, Quality Control, Robust Design, and the Taguchi Method, Springer, New York, 2012.
[54] W.Y. Fowlkes, C.M. Creveling, “Engineering Methods for Robust Product Design: Using Taguchi Methods in Technology and Product Development”, Addison-Wesley, United States of America, 1995.
[55] K. Pearson, “On lines and planes of closest fit to systems of points in spaces”, Philos. Mag, ser. 62, pp.559–572, 1901.
[56] H. Hotelling, “Analysis of a complex of statistical variables into principal components”, Journal of Educational Psychology, vol. 24, no.6, pp.417–441, 1933.
[57] M. S. Phadke, “Quality engineering using robust design”, Prentice-Hall, Englewood Cliffs, NJ, 1995.
[58] G. Taguchi, Y. Yokoyama, Y. Wu, “Taguchi methods: Design of experiments”, ASI Press, Chicago, 1993.
[59] P. J. Ross, “Taguchi techniques for quality engineering”, McGraw-Hill, New York, 1988.
[60] G. Taguchi, “Quality engineering in production systems”, McGraw-Hill, New York, 1989.
[61] F.C. Wu, “Optimisation of Multiple Quality Characteristics Based on Percentage Reduction of Taguchi’s Quality Loss”, International Journal of Advanced Manufacturing Technology, Vol. 20, pp. 749-753, 2002.
[62] J.C. Liou, “Application of PSO and SVR to the optimization shape of bulbous bow”, Master thesis, National Cheng Kung University, 2015。
[63] K.S. Hsu, “Fuel Cell Optimization Parameters Estimate by Artificial Bee Colony Optimization Algorithm”, Master thesis, Feng Chia University, 2012。
[64] P.R. Wu,“Fuel Cell Optimization Parameters Estimate by Particle Swarm Optimization”, Master thesis, Feng Chia University, 2011。
[65] Y. Shi, R.C. Eberhart, “Parameter selection in particle swarm optimization ,” V. W. Porto, N. Saravanan, D. and A. E. Eibenand(eds), Lecture Notes in Computer Science, 1447, Evolutionary Programming VII, Springer, Berlin, Vol.1447, pp.591-600, 1998.
[66] X.C. Guo, J.R. Zhang,Q.X. Liu, "Study on Particle Swarm Algorithms in Optimization Problems", The First Academic Seminar of Taiwan Association of Operations Research and Technology and Management Seminar, 2004.
[67] Y. Shi, R.C. Eberhart, “A modified particle swarm optimizer,” Proceedings of the IEEE International Conference on Evolutionary Computation , pp.69 -73,73, 1998.
[68] J. Larminie, A. Dicks, “Fuel Cell Systems Explained”, 2nded, John Wiley&Sons Ltd, 2013.
[69] Y.W. Su, “Performance Test and Electrochemical Impedance Spectroscopy/Cyclic Voltammetry for a μPEM Fuel Cell”, Master thesis, National Sun Yat-sen University, 2012
[70] M. Venkatraman, S. Shimpalee, J.W.V. Zee, S.I. Moon, C.W. Extrand, “Estimates of pressure gradients in PEMFC gas channels due to blockage by static liquid drops”, International Journal of Hydrogen Energy, Vol. 34, pp. 5522-5528, 2009
[71] S. Cordiner, S. P. Lanzani, V. Mulone, “3D effects of water-saturation distribution on polymeric electrolyte fuel cell (PEFC) performance”, International Journal of Hydrogen Energy, Vol. 36, pp. 10366-10375, 2011
[72] D.Y. Kang,“Study on effect of ribs in flow channel on high-temperature and relative humidity on low-temperature PEM fuel cells”, Master thesis, National Cheng Kung University, 2016。
校內:2026-08-31公開